
MTTTS17
Dimensionality Reduction and Visualization

Spring 2020
Jaakko Peltonen

Lecture 13:
Visualization and navigation of graphs -

Graph Layout

Slides originally by Francesco Corona and Manuel J.A. Eugster

Part 5:
Layout for general-
structured graphs

How to cure the Hairball?

Possible parts to play with:

• Visual attributes of edges and vertices

• Layout algorithm <---- we will concentrate on this

• Edge bundling

• Interaction <---- we will also talk about this

Graph drawing: Optimization algorithms

Usually, a graph has infinitely many different drawings.
However, the usefulness of a drawing of a graph depends on
its readability.

Readability issues are expressed by means of aesthetics,
which can be formulated as optimization goals for the
drawing algorithms.

A fundamental and classical aesthetic is the minimization of
crossings between edges.

(*) cf. Battista et al. (1994)

Graph drawing: Optimization algorithms

Minimization of edge crossings is a difficult goal to use, as
crossings depend in complicated ways on the node
placement.

Popular graph layout strategies use alternative approaches:

• force-based

• circular

• tree-based

Force-Directed layout algorithms

Force-directed methods define an objective function which
maps each graph layout into a number in representing
the energy of the layout.

This function is defined in such a way that low energies
correspond to layouts in which adjacent nodes are near
some pre-specified distance from each other, and in which
non-adjacent nodes are well-spaced. A layout for a graph is
then calculated by finding a minimum of this objective
function.

(*) Tamassia (2013, Chapter 12)

Kamada-Kawai Method

Imagine that the n vertices in an on-screen graph are
connected by springs. The graph becomes a dynamical
system that tries to reach a minimum-energy state, where
springs are, as much as possible, not stretched or
compressed overmuch from their “relaxed-state length”.

Use nonlinear optimization
(gradient descent or the Newton-
Raphson method) to minimize the
energy with respect to the y

i

Cost=∑
i=1

n−1

∑
j=i+1

n
1
2
k ij(∥y i− y j∥−l ij)

2 l ij=L⋅d ij length of shortest
path (n. of steps)
from i to j
desired on-screen
length of an edge

desired on-screen
length of edge (i,j)

k ij=K /d ij
2

strength of spring
(i,j)

constant

Gradients = Like the springs are pushing and pulling at the nodes

Tomihisa Kamada and Satoru Kawai. An Algorithm for Drawing
General Undirected Graphs. Information Processing Letters
31:7-15, 1989.

Graph drawing with fixed node locations
Example: US airport network

Airways.

US airport network

Kamada-Kawai layout with weighted edges based on the distance.

US airport network

Kamada-Kawai layout with weighted edges based on the distance; vertex
sizes based on total passengers, vertex color based on state.

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 1*500 iterations

In this
visualization,
edges are
drawn red if
they are too
long compared
to the desired
length

In this
visualization,
edges are
drawn blueish
if they are too
short
compared to
the desired
length

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 5*500 iterations

At first, the
many too-long
edges cause
the nodes to be
drawn towards
the center

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 10*500 iterations

Then the too-
short edges
start to push
away from the
central area

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 15*500 iterations

Then the too-
short edges
start to push
away from the
central area

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 20*500 iterations

Then the too-
short edges
start to push
away from the
central area

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 25*500 iterations

Then the too-
short edges
start to push
away from the
central area

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 30*500 iterations

The system
tries to find a
balance
between the
“springs”

---> vertices
whose edges
have small
desired
distance tend
to move in
groups away
from the more
dissimilar
vertices.

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 35*500 iterations

The system
tries to find a
balance
between the
“springs”

---> vertices
whose edges
have small
desired
distance tend
to move in
groups away
from the more
dissimilar
vertices.

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 40*500 iterations

The system
tries to find a
balance
between the
“springs”

---> vertices
whose edges
have small
desired
distance tend
to move in
groups away
from the more
dissimilar
vertices.

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 45*500 iterations

The system
tries to find a
balance
between the
“springs”

---> vertices
whose edges
have small
desired
distance tend
to move in
groups away
from the more
dissimilar
vertices.

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 50*500 iterations

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 55*500 iterations

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 60*500 iterations

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 65*500 iterations

The iteration
could keep
going even
further.

Notice how the
edges are now
more “grayish”
-- closer to
their desired
lengths

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 70*500 iterations

The iteration
could keep
going even
further.

Notice how the
edges are now
more “grayish”
-- closer to
their desired
lengths

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 75*500 iterations

The iteration
could keep
going even
further.

Notice how the
edges are now
more “grayish”
-- closer to
their desired
lengths

US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges
based on the distance: 80*500 iterations

The iteration
could keep
going even
further.

Notice how the
edges are now
more “grayish”
-- closer to
their desired
lengths

LinLog

Another algorithm based on minimizing an energy function:
two variants of the energy function, which represent the
cluster structure of the graph.

The variants are called Node-repulsion LinLog and
Edge-repulsion LinLog.

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

Comparison of LinLog variants to a classical algorithm on a graph of trade between
countries. Edge-repulsion LinLog is closest to physical locations of countries.

LinLog, continued

Most energy models try to enforce small, uniform edge
lengths (like the Kamada-Kawai method does). Can prevent
separation of clusters, and group high-degree nodes at the
center of the layout. LinLog criteria try to avoid these issues.

Node-repulsion LinLog:

It can be shown that layouts that minimize the Node-
repulsion LinLog cost minimize the ratio of the mean
distance between connected nodes to the mean distance
between all nodes.

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

CostNodeLinLog= ∑
{u , v}∈E

∥yu− yv∥− ∑
u∈V , v∈V

ln∥yu− yv∥

attraction between
connected nodes

repulsion between all nodes

LinLog, continued

Edge-repulsion LinLog:

Consider each node v as a set of deg(v) “end nodes” of
edges. Then can be shown that layouts that minimize the
Edge-repulsion LinLog cost minimize the ratio of the mean
distance between connected end nodes to the mean
distance between all end nodes.

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

Cost EdgeLinLog= ∑
{u , v}∈E

∥yu− yv∥− ∑
u∈V , v∈V

deg (u)deg (v)ln∥yu− yv∥

degree of node u =
number of edges
connected to node u

LinLog, continued

If the graph layout is related to the graph's cluster structure,
then nodes of the same dense subgraph should be close to
each other, and nodes of sparsely connected subgraphs
should be separated.

Minimizing distances between connected nodes, but
otherwise maximizing distances between nodes, achieves
this. Thus LinLog layouts try to reveal the graph's cluster
structure.

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

LinLog, continued

It can further be shown that if two dense clusters V1, V2 are
sparsely connected, their distance on the...
● ...Node-repulsion LinLog layout approximates their
 inverse node-normalized cut

● ...Edge-repulsion LinLog layout approximates their
 inverse edge-normalized cut

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

ncut (V 1,V 2)=
cut (V 1,V 2)

∣V 1∣⋅∣V 2∣

number of edges
between V1 and V2

ecut (V 1,V 2)=
cut (V 1,V 2)

deg (V 1)deg (V 2)

1/ncut (V 1,V 2)

1/ecut (V 1,V 2)

LinLog, continued

Pseudo-random graph with eight clusters in two groups.
Edges sampled uniformly densely within clusters, medium-
sparsely between the first group, sparsely between the
second group, very sparsely between groups.

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

LinLog, continued

Edge-repulsion Linlog on US airports data (note: may use
slightly different data and edge weighting)

Images from Andreas Noack. Energy Models for Graph Clustering.
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

Hive plots http://www.hiveplot.net/

Nodes are positioned on radially distributed linear axes, based on
structural properties of the network. Edges are drawn as curved links.

(claim from
hiveplot.net)

Circos

computes
circular layouts

http://circos.ca//

Part 6:
Interactive visualization
of graphs

Navigation and interaction

Navigation and interaction are essential in infoviz

• Layout algorithms alone cannot overcome the problems raised by the
large sizes of the graphs occurring in many applications

Zoom and pan (cont.)

26

Zoom and pan are conventional tools in visualization
• Indispensable when large graph structures are to be explored

Zooming is well-suited for graphs, because the graphics
used to display them are usually fairly simple
• Mostly lines, sometimes curves, and other simple geometric forms

Zoom and pan (cont.)

Zooming can take on two main forms
• Geometric: simply provides a blowup of the graph content

• Semantic: information content changes and more details
are shown when approaching a particular area of the graph

http://ucjeps.berkeley.edu/map2.html

Zoom and pan is thus conceptually simple, but it might create
problems when used in interactive environments

Zoom and pan (cont.)

Road map of Europe, the user has zoomed into the area
around London but wants to change to a view of Berlin
• Doing this without changing the zoom factor (at least temporarily)
might be slow (zoom out, pan to Berlin and zoom in again)
• The user wants smooth changes (perform zoom and pan in parallel)

When zooming in, the view expands exponentially fast
and the target point moves always faster than the pan
can keep up with

The net result is a target that is approached non-monotonically

Zoom and pan (cont.)

x

y

z

Space-scale
diagrams

Furnas and Bederson proposed an
elegant solution to alleviate the effects
of the zoom and pan problem

Create copies of the original 2D
picture, one at each possible
magnification and stack them up
• Combinations of (continuous) zoom and
pan actions are described as paths
• An optimal path in this abstract space
can be found e.g., thru minimum path
length

Focus and context

Focus+Context
techniques

They do not replace zoom and pan but rather complement them

Another well-known problem with zooming is that if
one zooms on a focus, all contextual information is lost

• The loss of context can become a considerable usability obstacle

A set of approaches allow
to focus on some detail
without losing the context

Focus and context (cont.)

Graphical fsh-eye distortion is
a popular technique for F+C

• Enlarging the area of interest and
showing other portions of the image
with successively less detail

Conceptually, the graph is mapped onto the
plane and a “focus” point is defned by the user
• The distance from the focus to each node of the tree is then
distorted by a function and the distorted points and
connecting edges are displayed

Focus and context (cont.)

The created distortion depends on
the form of the distorting function

Two basic variations:

• Polar distortion: It applies to the nodes
radially in all directions, starting from the
focus point

• Cartesian distortion: It is applied on each
direction (x and y) independently before
establishing the fnal position of the nodes

Focus and context (cont.)

This simple but powerful technique is an important
form of navigation but has at least one major pitfall
• The essence of the fsh-eye is to distort the position of each node

• If the distortion is faithfully applied, straight edges connecting the
nodes will also be distorted, the result is a general curve

Standard graphic systems don’t seem to offer the
necessary facilities to transform lines into curves
• Mostly because of the prohibitively large number of calculations

• ... so, we get straight-line edges and distortion only for nodes

The consequence of this solution is edge-crossing

Focus and context (cont.)

Interaction with fsh-eye means changing the position of
the focus and/or modifying the distortion parameters

The fsh-eye technique is independent of the layout
algorithm and it is defned as a separate postprocessing
step on the graphical layout of the graph
• (+) modular organization of the software implementation

• (-) may destroy the aesthetics governing the layout algorithm

Appropriate distortion possibilities can
be built into the layout algorithm itself
• Context+Focus effects that merge with Layout

Focus and context (cont.)

The hyperbolic layout does just that
• Whether in 2D or 3D, it produces a distorted
view with a focal point at some fxed location
in the graph, in a fsh-eye view sense

However, proper interaction with the
view means changing the position of the
center point within the graph
• The root has been shifted to the right,
putting more focus on the nodes that
were toward the left

Software

● GraphViz: http://www.graphviz.org - open source visualization software,
includes implementation of some layout optimization algorithms.

● Cytoscape: http://www.cytoscape.org - open source, oriented for
bioinformatics data, includes some layout optimization algorithms

● Gephi: http://gephi.org - open source, includes some layout optimization
algorithms

Other resources:
● www.graphdrawing.org
● graph drawing tutorial:
http://cs.brown.edu/people/rt/papers/gd-tutorial/gd-contraints.pdf

● Journal of Graph Algorithms and Applications: open access journal, http://
jgaa.info

References

I. Herman, G. Melançon and S. Marshall, “Graph visualization and
navigation in information visualization: A survey”, IEEE Transactions on
Visualization and Computer Graphics, 6(1), 24-43, 2000

Manuel Lima, Visual complexity: Mapping patterns of information.
Princeton Architectural Press (2011)

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Algorithms for drawing graphs: An annotated bibliography.
Computational Geometry: Theory and Applications, 4(5):235{282, 1994.
http://dx.doi.org/10.1016/0925-7721(94)00014-X.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets:
Reasoning about a Highly Connected World. Cambridge University Press,
2010. http://www.cs.cornell.edu/home/kleinber/networks-book/.

References, continued

Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in
order: An introduction to the r package seriation. Journal of Statistical
Software, 25(3):1{34, 2008. URL http://www.jstatsoft.org/v25/i03.

Robert Kosara. Graphs beyond the hairball, 2012. URL
http://eagereyes.org/techniques/graphs-hairball. Blog entry.

Carlos E. Scheidegger. So you want to look at a graph, part 1, 2012. URL
http://cscheid.net/blog/so_you_want_to_look_at_a_graph__part_1.
Blog entry.

Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization.
CRC Press, 2013. http://cs.brown.edu/~rt/gdhandbook/.

Andreas Noack. Energy Models for Graph Clustering. Journal of Graph
Algorithms and Applications, 11(2):453-480, 2007.
http://jgaa.info/accepted/2007/Noack2007.11.2.pdf

References, continued

Tomihisa Kamada and Satoru Kawai. An Algorithm for Drawing General
Undirected Graphs. Information Processing Letters 31:7-15, 1989.

Andreas Noack. Energy Models for Graph Clustering. Journal of Graph
Algorithms and Applications, 11(2):453-480, 2007.
http://jgaa.info/accepted/2007/Noack2007.11.2.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

