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Part 5: 
Layout for general-
structured graphs



How to cure the Hairball?

Possible parts to play with:

• Visual attributes of edges and vertices

• Layout algorithm <---- we will concentrate on this

• Edge bundling

• Interaction <---- we will also talk about this



Graph drawing: Optimization algorithms

Usually, a graph has infinitely many different drawings. 
However, the usefulness of a drawing of a graph depends on 
its readability.

Readability issues are expressed by means of aesthetics, 
which can be formulated as optimization goals for the 
drawing algorithms.

A fundamental and classical aesthetic is the minimization of
crossings between edges.

(*) cf. Battista et al. (1994)



Graph drawing: Optimization algorithms

Minimization of edge crossings is a difficult goal to use, as 
crossings depend in complicated ways on the node 
placement.

Popular graph layout strategies use alternative approaches:

• force-based

• circular

• tree-based



Force-Directed layout algorithms

Force-directed methods define an objective function which 
maps each graph layout into a number in        representing 
the energy of the layout.

This function is defined in such a way that low energies 
correspond to layouts in which adjacent nodes are near 
some pre-specified distance from each other, and in which 
non-adjacent nodes are well-spaced. A layout for a graph is 
then calculated by finding a minimum of this objective 
function.

(*) Tamassia (2013, Chapter 12)



Kamada-Kawai Method

Imagine that the n vertices in an on-screen graph are 
connected by springs. The graph becomes a dynamical 
system that tries to reach a minimum-energy state, where 
springs are, as much as possible, not stretched or 
compressed overmuch from their “relaxed-state length”.

Use nonlinear optimization
(gradient descent or the Newton-
Raphson method) to minimize the
energy with respect to the y

i
 

Cost=∑
i=1

n−1

∑
j=i+1

n
1
2
k ij(∥y i− y j∥−l ij)

2 l ij=L⋅d ij length of shortest
path (n. of steps)
from i to j 
desired on-screen 
length of an edge

desired on-screen 
length of edge (i,j)

k ij=K /d ij
2

strength of spring 
(i,j)

constant

Gradients = Like the springs are pushing and pulling at the nodes

Tomihisa Kamada and Satoru Kawai. An Algorithm for Drawing 
General Undirected Graphs. Information Processing Letters 
31:7-15, 1989.



Graph drawing with fixed node locations
Example: US airport network

Airways.



US airport network

Kamada-Kawai layout with weighted edges based on the distance.



US airport network

Kamada-Kawai layout with weighted edges based on the distance; vertex
sizes based on total passengers, vertex color based on state.



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 1*500 iterations

In this 
visualization, 
edges are 
drawn red if 
they are too 
long compared 
to the desired 
length

In this 
visualization, 
edges are 
drawn blueish 
if they are too 
short 
compared to 
the desired 
length



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 5*500 iterations

At first, the 
many too-long 
edges cause 
the nodes to be 
drawn towards 
the center



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 10*500 iterations

Then the too-
short edges 
start to push 
away from the 
central area



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 15*500 iterations

Then the too-
short edges 
start to push 
away from the 
central area



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 20*500 iterations

Then the too-
short edges 
start to push 
away from the 
central area



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 25*500 iterations

Then the too-
short edges 
start to push 
away from the 
central area



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 30*500 iterations

The system 
tries to find a 
balance 
between the 
“springs” 

---> vertices 
whose edges 
have small 
desired 
distance tend 
to move in 
groups away 
from the more 
dissimilar 
vertices.



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 35*500 iterations

The system 
tries to find a 
balance 
between the 
“springs” 

---> vertices 
whose edges 
have small 
desired 
distance tend 
to move in 
groups away 
from the more 
dissimilar 
vertices.



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 40*500 iterations

The system 
tries to find a 
balance 
between the 
“springs” 

---> vertices 
whose edges 
have small 
desired 
distance tend 
to move in 
groups away 
from the more 
dissimilar 
vertices.



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 45*500 iterations

The system 
tries to find a 
balance 
between the 
“springs” 

---> vertices 
whose edges 
have small 
desired 
distance tend 
to move in 
groups away 
from the more 
dissimilar 
vertices.



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 50*500 iterations



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 55*500 iterations



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 60*500 iterations



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 65*500 iterations

The iteration 
could keep 
going even 
further. 

Notice how the 
edges are now 
more “grayish” 
-- closer to 
their desired 
lengths



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 70*500 iterations

The iteration 
could keep 
going even 
further. 

Notice how the 
edges are now 
more “grayish” 
-- closer to 
their desired 
lengths



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 75*500 iterations

The iteration 
could keep 
going even 
further. 

Notice how the 
edges are now 
more “grayish” 
-- closer to 
their desired 
lengths



US airport network

Iteratively minimizing the Kamada-Kawai cost function with weighted edges 
based on the distance: 80*500 iterations

The iteration 
could keep 
going even 
further. 

Notice how the 
edges are now 
more “grayish” 
-- closer to 
their desired 
lengths



LinLog

Another algorithm based on minimizing an energy function: 
two variants of the energy function, which represent the 
cluster structure of the graph.

The variants are called Node-repulsion LinLog and 
Edge-repulsion LinLog.

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

Comparison of LinLog variants to a classical algorithm on a graph of trade between 
countries. Edge-repulsion LinLog is closest to physical locations of countries.



LinLog, continued

Most energy models try to enforce small, uniform edge 
lengths (like the Kamada-Kawai method does). Can prevent 
separation of clusters, and group high-degree nodes at the 
center of the layout. LinLog criteria try to avoid these issues.

Node-repulsion LinLog:

It can be shown that layouts that minimize the Node-
repulsion LinLog cost minimize the ratio of the mean 
distance between connected nodes to the mean distance 
between all nodes. 

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

CostNodeLinLog= ∑
{u , v}∈E

∥yu− yv∥− ∑
u∈V , v∈V

ln∥yu− yv∥

attraction between 
connected nodes

repulsion between all nodes



LinLog, continued

Edge-repulsion LinLog:

Consider each node v as a set of deg(v) “end nodes” of 
edges. Then can be shown that layouts that minimize the 
Edge-repulsion LinLog cost minimize the ratio of the mean 
distance between connected end nodes to the mean 
distance between all end nodes. 

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

Cost EdgeLinLog= ∑
{u , v}∈E

∥yu− yv∥− ∑
u∈V , v∈V

deg (u)deg (v)ln∥yu− yv∥

degree of node u = 
number of edges 
connected to node u



LinLog, continued

If the graph layout is related to the graph's cluster structure, 
then nodes of the same dense subgraph should be close to 
each other, and nodes of sparsely connected subgraphs 
should be separated.

Minimizing distances between connected nodes, but 
otherwise maximizing distances between nodes, achieves 
this. Thus LinLog layouts try to reveal the graph's cluster 
structure.

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.



LinLog, continued

It can further be shown that if two dense clusters V1, V2 are 
sparsely connected, their distance on the...
●  ...Node-repulsion LinLog layout  approximates their  
  inverse node-normalized cut 

● ...Edge-repulsion LinLog layout approximates their 
 inverse edge-normalized cut

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.

ncut (V 1,V 2)=
cut (V 1,V 2)

∣V 1∣⋅∣V 2∣

number of edges 
between V1 and V2

ecut (V 1,V 2)=
cut (V 1,V 2)

deg (V 1)deg (V 2)

1/ncut (V 1,V 2)

1/ecut (V 1,V 2)



LinLog, continued

Pseudo-random graph with eight clusters in two groups. 
Edges sampled uniformly densely within clusters, medium-
sparsely between the first group, sparsely between the 
second group, very sparsely between groups.

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.



LinLog, continued

Edge-repulsion Linlog on US airports data (note: may use 
slightly different data and edge weighting)

Images from  Andreas Noack. Energy Models for Graph Clustering. 
Journal of Graph Algorithms and Applications, 11(2):453-480, 2007.



Hive plots http://www.hiveplot.net/

Nodes are positioned on radially distributed linear axes, based on 
structural properties of the network. Edges are drawn as curved links.

(claim from 
hiveplot.net)



Circos

computes
circular layouts

http://circos.ca//



Part 6: 
Interactive visualization 
of graphs



Navigation and interaction

Navigation and interaction are essential in infoviz

• Layout algorithms alone cannot overcome the problems raised by the 
large sizes of the graphs occurring in many applications



Zoom and pan (cont.)

26

Zoom and pan are conventional tools in visualization
• Indispensable when large graph structures are to be explored

Zooming is well-suited for graphs, because the graphics
used to display them are usually fairly simple
• Mostly lines, sometimes curves, and other simple geometric forms



Zoom and pan (cont.)

Zooming can take on two main forms
• Geometric: simply provides a blowup of the graph content

• Semantic: information content changes and more details
are shown when approaching a particular area of the graph

http://ucjeps.berkeley.edu/map2.html

Zoom and pan is thus conceptually simple, but it might create 
problems when used in interactive environments



Zoom and pan (cont.)

Road map of Europe, the user has zoomed into the area
around London but wants to change to a view of Berlin
• Doing this without changing the zoom factor (at least temporarily)
might be slow (zoom out, pan to Berlin and zoom in again)
• The user wants smooth changes (perform zoom and pan in parallel)

When zooming in, the view expands exponentially fast
and the target point moves always faster than the pan
can keep up with

The net result is a target that is approached non-monotonically



Zoom and pan (cont.)

x

y

z

 

Space-scale 
diagrams

Furnas and Bederson proposed an
elegant solution to alleviate the effects
of the zoom and pan problem

Create copies of the original 2D
picture, one at each possible
magnification and stack them up
• Combinations of (continuous) zoom and
pan actions are described as paths
• An optimal path in this abstract space 
can be found e.g., thru minimum path 
length



Focus and context

Focus+Context 
techniques

They do not replace zoom and pan but rather complement them

Another well-known problem with zooming is that if
one zooms on a focus, all contextual information is lost

• The loss of context can become a considerable usability obstacle

A set of approaches allow
to focus on some detail
without losing the context



Focus and context (cont.)

Graphical fsh-eye distortion is
a popular technique for F+C

• Enlarging the area of interest and
showing other portions of the image
with successively less detail

Conceptually, the graph is mapped onto the
plane and a “focus” point is defned by the user
• The distance from the focus to each node of the tree is then
distorted by a function and the distorted points and
connecting edges are displayed



Focus and context (cont.)

 

 

 

 

 

 

 

 

 

 

The created distortion depends on
the form of the distorting function

Two basic variations:

• Polar distortion: It applies to the nodes
radially in all directions, starting from the
focus point

• Cartesian distortion: It is applied on each
direction (x and y) independently before
establishing the fnal position of the nodes



Focus and context (cont.)

This simple but powerful technique is an important
form of navigation but has at least one major pitfall
• The essence of the fsh-eye is to distort the position of each node

• If the distortion is faithfully applied, straight edges connecting the
nodes will also be distorted, the result is a general curve

Standard graphic systems don’t seem to offer the
necessary facilities to transform lines into curves
• Mostly because of the prohibitively large number of calculations

• ... so, we get straight-line edges and distortion only for nodes

The consequence of this solution is edge-crossing



Focus and context (cont.)

Interaction with fsh-eye means changing the position of
the focus and/or modifying the distortion parameters

The fsh-eye technique is independent of the layout
algorithm and it is defned as a separate postprocessing
step on the graphical layout of the graph
• (+) modular organization of the software implementation

• (-) may destroy the aesthetics governing the layout algorithm

Appropriate distortion possibilities can
be built into the layout algorithm itself
• Context+Focus effects that merge with Layout



Focus and context (cont.)

The hyperbolic layout does just that
• Whether in 2D or 3D, it produces a distorted
view with a focal point at some fxed location
in the graph, in a fsh-eye view sense

However, proper interaction with the 
view means changing the position of the 
center point within the graph
• The root has been shifted to the right,
putting more focus on the nodes that
were toward the left



Software

● GraphViz: http://www.graphviz.org  - open source visualization software, 
includes implementation of some layout optimization algorithms.

● Cytoscape: http://www.cytoscape.org  - open source, oriented for 
bioinformatics data, includes some layout optimization algorithms

● Gephi: http://gephi.org - open source, includes some layout optimization 
algorithms

Other resources:
● www.graphdrawing.org
● graph drawing tutorial: 
http://cs.brown.edu/people/rt/papers/gd-tutorial/gd-contraints.pdf

● Journal of Graph Algorithms and Applications: open access journal, http://
jgaa.info
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