
MTTTS17
Dimensionality Reduction and Visualization

Spring 2020
Jaakko Peltonen

Lecture 12:
Visualization and navigation of graphs -

Hairballs and Beyond

Slides originally by Francesco Corona and Manuel J.A. Eugster

Part 1:
Graph-structured data

A simple way to determine the applicability of graph
visualizations is to consider the following question

Is there an inherent relation among the
data elements to be visualized?

If the answer is “yes”,
then the data are
“structured”

If the answer is “no”,
then the data are
“unstructured”

One of the goals of
visualization might be to help
discover relations among data
thru visual means

The data can be
represented by the nodes
of a graph with the edges
indicating the relations

Structured data and graphs

Graph visualization has many areas of application

• We have encountered a file hierarchy on a computer system

A file hierarchy can be represented as a tree (a type of
graph) and it is often necessary to navigate thru the tree
in order to find a particular file

Structured data and graphs (cont.)

4

● Other familiar types of graphs are organizational charts, website maps as well
as history browsing, ...

● In biology and chemistry, graphs are applied to molecular maps, evolutionary
trees, biomedical pathways, ...

● In dynamic systems analysis, graphs are used to represent Petri nets and
automata ...

For structured data, graphs are the fundamental
structural representation of the data

Structured data and graphs (cont.)

The size of the graph to view is a key issue in graph
visualization, large graphs pose problems

● If the number of elements is large, it can compromise performance and reach
the viewing limits of the platform

There is an interface problem

● While the size of the structures we work with grows, the “windows” through
which we look at them remains small

Structured data and graphs (cont.)

Even when it is possible to layout and display all the elements,
the issue of viewability or usability arises
• It will become impossible to discern between nodes and edges

It is not uncommon that usability becomes an issue even
before the problem of discernability is reached

In general, displaying an
entire large graph may give
an indication of the overall
structure, but it makes it
diffcult to comprehend it

Structured data and graphs (cont.)
Chris Harrison (2006): WikiViz (v3)

http://www.chrisharrison.net/index.php/Visualizations/WikiViz

Visualization of
wikipedia
articles up to
three levels
deep in the
hierarchy,
centered on
physics

Structured data and graphs (cont.)

http://drewconway.com/zia/2013/3/29/the-value-of-edges-in-complex-network-visualization

relationships
among artists
in the last.fm
database

Structured data and graphs (cont.)
Jer Thorp (2009): NYTimes: 365/360

http://blog.blprnt.com/blog/blprnt/7-days-of-source-day-2-nytimes-36536

New York Times stories
from 2009

Probably nodes = entities
(people/organizations)
mentioned, edges =
articles mentioning both
entities

Structured data and graphs (cont.)

Moritz Stefaner (2009): Citation patterns

http://weloveinfographics.info/post/11903980187/citation-patterns

Nodes on the
circumference =
journals arranged by
field,

edges = Amount of
citations between
different journals.

Structured data and graphs (cont.)

Comprehension and analysis
of data in graph structures is
easiest when the size of the
displayed graph is small

The interface design problem
amounts to deciding what
parts of a large structure to
show and how

● Graph layout issues and limitations with regard to scaleability

● Approaches to navigation of large graphs

Today: An impression of graph drawing and layout algorithms
from the point of view of information visualization.

Next week: a few important layout algorithms in detail

Part 2:
Graphs and their
properties

Graph: definition

A graph G = (V, E) is a set of vertices (nodes) V together
with a set of edges (lines) E; where E consists of two-
element subsets of V.

For example:
• V = {A, B, C, D}
• E = {{A, B}, {A, C}, {B, C}, {C, D}}

(*) see, e.g., Easley and Kleinberg (2010)

Graph: definition - example

V = {A, B, C, D} E = {{A, B}, {A, C}, {B, C}, {C, D}}

One way to draw the graph

Graph: definition - example

V = {A, B, C, D} E = {{A, B}, {A, C}, {B, C}, {C, D}}

One way to draw the graph Another way to draw the same graph

Graph: definition, continued

Undirected or directed edges:

In an undirected graph the edges have no orientation, i.e.,
whenever it is implied that .

In an directed graph the edges have an orientation, i.e., the
edges are ordered pairs where means that there
is a directed arc from the node A to the node B.

Graph: definition - example of directed edges

V = {A, B, C, D} E = {(A, B), (A, C), (B, C), (C, D)}

One way to draw the graph Another way to draw the same graph

Simple Graph Properties

order: the number of vertices |V|
size: the number of edges |E|
path: a sequence of edges which connect a sequence of vertices
cycle: a path starting and ending at the same vertex
shortest path: a path between two vertices with minimal
(weighted) number of edges
distance: the number of edges in a shortest path between two
vertices

See, e.g., Wikipedia for a list of graph properties.

Small-World experiment/Six degrees of separation, Bacon number
are examples of applied graph theory.

Types of graphs: trees vs. networks

Tree Network

Root

Arc

Node

Leaf
node

Graph labeling/attributes

G = (V, E) is the abstract representation of the graph, all that
matters are the pairwise relations, i.e., which vertices are
connected by edges.

In terms of application (social network analysis, information
visualization, etc), the abstract representation of the graph
has to be connected to data!

Attributes

Attributes for vertices and edges allow to connect the graph
components to data (loose definition):

A, B the specific attributes; V
A
, and V

B
 the corresponding set

of possible attribute values.

For example: names of people for the vertices, money flow
between two people for edges (i.e., the direction of an edge
can also be seen as an attribute).

US airport network (2010 December)

Passenger flights between airports in the United States. The
dataset was compiled based on flights in 2010 December
and is available in the igraphdata R-package.

743 vertices:

name City State Latitude Longitude
1 BGR Bangor ME 44.80 -68.84
2 BOS Boston MA 42.35 -71.00
3 ANC Anchorage AK 61.17 -150.01
4 JFK New York NY 40.63 -73.78
5 LAS Las Vegas NV 36.07 -115.18
6 MIA Miami FL 25.78 -80.30

US airport network (2010 December)

Passenger flights between airports in the United States. The
dataset was compiled based on flights in 2010 December
and is available in the igraphdata R-package.

8131 directed edges:

from to Departures Seats Passengers Distance Flights
1 1G4 VGT 52 988 777 79 1
2 A23 HOM 13 78 15 19 2
3 A23 PGM 1 6 1 30 1
4 A27 FAI 4 36 10 91 2
5 A29 ADQ 4 16 8 39 2
6 ABE ATL 29 1785 1481 692 2

Part 3:
Graph drawing

Graph Drawing

Map the graph attributes to the aesthetics of geometric
objects, which represent the graph.

Remember: "Everything shown by a visualization should
exist in the data!" (cf. Scheidegger, 2012)

Node-link diagram:
"When you think of a graph,
you likely already think of a
node-link diagram - unless
you're a mathematician."
Kosara (2012)

“Simple” Graph Representations

1. Combinatorial description

2. Edge list

3. Adjacency matrix

4. Incidence matrix

These representations only require knowledge of the nodes and edges,
and an order to show them. In contrast, visual drawing of graphs like node-
link diagrams require an on-screen location for every node, and a line or
curve for every edge.

Adjacency Matrix

Adjacency Matrix

A B C D
A 0 1 1 0
B 0 0 1 0
C 0 1 0 1
D 0 0 1 0

End-nodes

Start-
nodes

Adjacency Matrix

A B C D
A 0 1 1 0
B 0 0 1 0
C 0 1 0 1
D 0 0 1 0

End-nodes

Start-
nodes

Start-
nodes

End-nodes

US Airport Network

Visualization of the adjacency matrix, i.e., which airports are
connected via one or more flights (ignoring the direction).

Visualization by Graph layout

The basic graph drawing problem can be put simply:
●Given a set of nodes (data) with edges (relations) calculate
the position of the nodes and the curve to be drawn for
each edge

● In other words: For a given combinatorial description of a
graph G, derive a node-link diagram representation in the
plane.

It’s not a new problem: It has always existed for the simple reason that a
graph is often defined by its own drawing

Usually, the vertices are represented by symbols such as
circles or boxes, and each edge is represented by a simple
open curve between the symbols associated with the
vertices.

Visualization by Graph layout

"Isn't that a simple problem ...?!?"

There is a plethora of layout algorithms, each using
different techniques and optimizing different criteria

Battista et al. (1994) lists more than 300 publications; the
Graph Drawing E-print Archive more than 800 publications
(Oct 2013).

• G. di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph
drawing: Algorithms for the visualization of graphs, Prentice
Hall, 1999

Graph layout (cont.)

c

Edge Insertion

Shortest Path

Subgraph (extraction)

Planar subgraph

Acyclic subgraph

(Two Layer)
Crossing Minimization

Barycenter heuristic

Median Heuristic

Split Heuristic

Greedy Insert

Greedy Switch

Cross. Min. Opt.

Rank Assignment

DFS Ranking

Hierarchy Ranking

Hierarchy Layout

Fast Hierarchy Layout

Layout

Visibility representation

Convex Layout

FPP Layout

Schnyder Layout

No crossings

Grid Layout

Ranking

Cross. Min.

Compute Coord.

Tree Layout

Sugiyama Layout

Spring Layout

Tutte Layout

Planar Layout Planar Grid Layout

Compaction

Augment.

Planarization

Planarize subgraph

Insert edges

 Mutzel et al.. A library of algorithms for graph drawing,1998

Graph drawing: Optimization algorithms

Usually, a graph has infinitely many different drawings.
However, the usefulness of a drawing of a graph depends on
its readability.

Readability issues are expressed by means of aesthetics,
which can be formulated as optimization goals for the
drawing algorithms.

A fundamental and classical aesthetic is the minimization of
crossings between edges.

(*) cf. Battista et al. (1994)

Graph drawing with fixed node locations
Example: US airport network

Graph drawing with fixed node locations
Example: US airport network

Airways.

Passenger arrival of the 25 busiest airports
(difference linearly scaled).

Graph drawing with fixed node locations
Example: US airport network

Arrival of free (blue) versus taken (red)
seats of the 25 busiest airports.

Graph drawing with fixed node locations
Example: US airport network

Part 4:
Layout for tree-
structured graphs

Graph layout (cont.)

Trees have received
most of the attention

A classical tree layout will
position children nodes below
their common ancestors

Ernst Haekel (1879):
Pedigree of Man
(here children are above the ancestors)

Graph layout (cont.)

This layout satisfes a
graph property referred
to as planarity
• It is possible to draw a tree on
a plane without edge crossings

It fulflls many aesthetic rules imposed on the fnal layout
• Nodes with equal depth can be placed on the same horizontal line,
distance between sibling nodes can be often fiied, ...
• The drawing clearly refects the intrinsic hierarchy of the data

Graph layout (cont.)

The Reingold and Tilford (1990, 1997) algorithm for trees
is a tidy example for achieving these aesthetic goals
(details: http://emr.cs.iit.edu/~reingold/tidier-drawings.pdf)

Isomorphic subtrees are laid
down analogously

Distance between nodes is a
parameter of the algorithm

Only a few hundred nodes and the layout
is already very dense

Difficult interaction with the graph (too little space)

Graph layout (cont.)

Radial positioning places graph
nodes on concentric circles,
according to their depth in the tree

A subtree is can be laid out over
a sector of the circle so that two
adjacent sectors do not overlap

The Eades algorithm (1992) performs this layout

The Reingold-Tilford algorithm generates a more classical
drawing
• In the radial positioning it is less clear where the root of the tree is
and one might eiplore the graph in a less hierarchical way

Graph layout (cont.)

Hierarchy can be recovered using
the balloon view layout
• Sibling subtrees are drawn in circles
centered at their parent nodes
• At the cost of node details

It’s a variant of the radial layout, it can
be constructed by projecting a conetree
(a 3D graph) onto a plane

• Parent at the apei of a cone, and its
children spaced evenly along its base

Graph layout (cont.)

Tree layout algorithms are often
characterized by low complexity
and simple implementation
• They work well and they are applicable
only for relatively small graphs

One very popular technique is to display larger
graphs in three dimensions rather than two
• The idea is that the eitra dimension gives literally more space and
eases the problem of displaying large structures
• The viewer can navigate to find a view without occlusions

Graph layout (cont.)

The simplest approach is
to generalize classical 2D
layout algorithms for 3D
• 3D radial tree algorithms

In spite of the apparent simplicity, displaying
trees in 3D can introduce new problems

● Additional visual cues (occlusion, transparency, depth, ...)

● Minimizing edge crossing for multiple perspectives may not be as rewarding
as hoped

Graph layout (cont.)

In spite of all the technical development
and the obviously attractive features, ...

3D graph visualization techniques have still signifcant
diffculties

• The main reason lies with the inherent cognitive
issues of 3D navigation/interaction in 2D screens

• Perceptual and navigational conficts

Graph layout (cont.)

The hyperbolic layout of trees is one of the recent forms
of layout (Lamping et al. and Munzner in the mid-late 90’s)

Developed with visualization and
interaction in mind
• It provides a distorted view of a tree layout

• It resembles the effect of using a
 fish-eye lens
• It can be implemented in either 2D or 3D

Graph layout (cont.)

Hyperbolic views are radically
different, due to their different
geometrical background

This distorted view makes it
possible to interact with
potentially large trees making it
suitable for some demanding
real-world applications

Graph layout (cont.)

Part 4:
Seriation

Addendum: Seriation

Seriation is to finding a suitable linear order for a set of
objects given data and a loss or merit function (in order to
reveal structural information).

Can be done without creating a layout

(*) cf. Hahsler et al. (2008)

Seriation - Combinatorial optimization problem:

Given is a symmetric (dissimilarity/binary) matrix D = (dij)
where dij for represents the dissimilarity between
objects i and j , and dii = 0 for all i .

The permutation function is a function which reorders the
objects in D by simultaneously permuting rows and columns.

The seriation problem is to find a permutation function
which optimizes the value of a given loss function L or merit
function M:

Hard problem: the number of possible permutations for n
objects is n!.

Seriation - Combinatorial optimization problem:

Partial enumeration methods: Search for the exact
solution in a clever way; independent of the loss/merit
function.

Traveling salesperson problem solver: Search for a
Hamilton path (i.e., a path where each vertex is visited
once); wide array of heuristics are available.

Bond energy algorithm: Rearrange columns and rows of a
matrix such that each entry is as closely numerically related
to its four neighbors as possible; simple heuristic.

Hierarchical clustering: Use the order of the leaf nodes in a
hierarchical clustering; simple heuristic.

(*) for details see Hahsler et al. (2008)

Seriation example - US Airport Network

Seriation example - US Airport Network

Color indicates whether flight is within the same state (blue)
or between two different states (red).

Note: Seriation can be used for vectorial data
too...

Iris data, unordered Iris data, ordered
distance matrix distance matrix

References

I. Herman, G. Melançon and S. Marshall, “Graph visualization and
navigation in information visualization: A survey”, IEEE Transactions on
Visualization and Computer Graphics, 6(1), 24-43, 2000

Manuel Lima, Visual complexity: Mapping patterns of information.
Princeton Architectural Press (2011)

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Algorithms for drawing graphs: An annotated bibliography.
Computational Geometry: Theory and Applications, 4(5):235{282, 1994.
http://dx.doi.org/10.1016/0925-7721(94)00014-X.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets:
Reasoning about a Highly Connected World. Cambridge University Press,
2010. http://www.cs.cornell.edu/home/kleinber/networks-book/.

References, continued

Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in
order: An introduction to the r package seriation. Journal of Statistical
Software, 25(3):1{34, 2008. URL http://www.jstatsoft.org/v25/i03.

Robert Kosara. Graphs beyond the hairball, 2012. URL
http://eagereyes.org/techniques/graphs-hairball. Blog entry.

Carlos E. Scheidegger. So you want to look at a graph, part 1, 2012. URL
http://cscheid.net/blog/so_you_want_to_look_at_a_graph__part_1.
Blog entry.

Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization.
CRC Press, 2013. http://cs.brown.edu/~rt/gdhandbook/.

Part 5:
Layout for general-
structured graphs

Graph drawing: Optimization algorithms

Popular graph layout strategies:
• force-based
• circular
• tree-based

Force-Directed layout algorithms

Force-directed methods define an objective function which
maps each graph layout into a number in representing
the energy of the layout.

This function is defined in such a way that low energies
correspond to layouts in which adjacent nodes are near
some pre-specified distance from each other, and in which
non-adjacent nodes are well-spaced. A layout for a graph is
then calculated by finding a minimum of this objective
function.

(*) Tamassia (2013, Chapter 12)

US airport network

Kamada-Kawai layout with weighted edges based on the distance.

US airport network

Kamada-Kawai layout with weighted edges based on the distance; vertex
sizes based on total passengers, vertex color based on state.

How to cure the Hairball?

Possible parts to play with:

• Visual attributes of edges and vertices

• Layout algorithm <---- we will concentrate on this

• Edge bundling

• Interaction <---- we will also talk about this

Hive plots

http://www.hiveplot.net/

Circos

http://circos.ca//

Part 6:
Interactive visualization
of graphs

Navigation and interaction

Navigation and interaction are essential in infoviz

• Layout algorithms alone cannot overcome the problems raised by the
large sizes of the graphs occurring in many applications

Zoom and pan (cont.)

26

Zoom and pan are conventional tools in visualization
• Indispensable when large graph structures are to be eiplored

Zooming is well-suited for graphs, because the graphics
used to display them are usually fairly simple
• Mostly lines, sometimes curves, and other simple geometric forms

Zoom and pan (cont.)

Zooming can take on two main forms
• Geometric: simply provides a blowup of the graph content

• Semantic: information content changes and more details
are shown when approaching a particular area of the graph

http://ucjeps.berkeley.edu/map2.html

Zoom and pan is thus conceptually simple, but it might create
problems when used in interactive environments

Zoom and pan (cont.)

Road map of Europe, the user has zoomed into the area
around London but wants to change to a view of Berlin
• Doing this without changing the zoom factor (at least temporarily)
might be slow (zoom out, pan to Berlin and zoom in again)
• The user wants smooth changes (perform zoom and pan in parallel)

When zooming in, the view expands exponentially fast
and the target point moves always faster than the pan
can keep up with

The net result is a target that is approached non-monotonically

Zoom and pan (cont.)

x

y

z

Space-scale
diagrams

Furnas and Bederson proposed an
elegant solution to alleviate the effects
of the zoom and pan problem

Create copies of the original 2D
picture, one at each possible
magnification and stack them up
• Combinations of (continuous) zoom and
pan actions are described as paths
• An optimal path in this abstract space
can be found e.g., thru minimum path
length

Focus and context

Focus+Context
techniques

They do not replace zoom and pan but rather complement them

Another well-known problem with zooming is that if
one zooms on a focus, all contextual information is lost

• The loss of conteit can become a considerable usability obstacle

A set of approaches allow
to focus on some detail
without losing the context

Focus and context (cont.)

Graphical fsh-eye distortion is
a popular technique for F+C

• Enlarging the area of interest and
showing other portions of the image
with successively less detail

Conceptually, the graph is mapped onto the
plane and a “focus” point is defned by the user
• The distance from the focus to each node of the tree is then
distorted by a function and the distorted points and
connecting edges are displayed

Focus and context (cont.)

The created distortion depends on
the form of the distorting function

Two basic variations:

• Polar distortion: It applies to the nodes
radially in all directions, starting from the
focus point

• Cartesian distortion: It is applied on each
direction (i and y) independently before
establishing the final position of the nodes

Focus and context (cont.)

This simple but powerful technique is an important
form of navigation but has at least one major pitfall
• The essence of the fish-eye is to distort the position of each node

• If the distortion is faithfully applied, straight edges connecting the
nodes will also be distorted, the result is a general curve

Standard graphic systems don’t seem to offer the
necessary facilities to transform lines into curves
• Mostly because of the prohibitively large number of calculations

• ... so, we get straight-line edges and distortion only for nodes

The consequence of this solution is edge-crossing

Focus and context (cont.)

Interaction with fsh-eye means changing the position of
the focus and/or modifying the distortion parameters

The fsh-eye technique is independent of the layout
algorithm and it is defned as a separate postprocessing
step on the graphical layout of the graph
• (+) modular organization of the software implementation

• (-) may destroy the aesthetics governing the layout algorithm

Appropriate distortion possibilities can
be built into the layout algorithm itself
• Conteit+Focus effects that merge with Layout

Focus and context (cont.)

The hyperbolic layout does just that
• Whether in 2D or 3D, it produces a distorted
view with a focal point at some fiied location
in the graph, in a fish-eye view sense

However, proper interaction with the
view means changing the position of the
center point within the graph
• The root has been shifted to the right,
putting more focus on the nodes that
were toward the left

References

I. Herman, G. Melançon and S. Marshall, “Graph visualization and
navigation in information visualization: A survey”, IEEE Transactions on
Visualization and Computer Graphics, 6(1), 24-43, 2000

Manuel Lima, Visual complexity: Mapping patterns of information.
Princeton Architectural Press (2011)

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Algorithms for drawing graphs: An annotated bibliography.
Computational Geometry: Theory and Applications, 4(5):235{282, 1994.
http://dx.doi.org/10.1016/0925-7721(94)00014-X.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets:
Reasoning about a Highly Connected World. Cambridge University Press,
2010. http://www.cs.cornell.edu/home/kleinber/networks-book/.

References, continued

Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in
order: An introduction to the r package seriation. Journal of Statistical
Software, 25(3):1{34, 2008. URL http://www.jstatsoft.org/v25/i03.

Robert Kosara. Graphs beyond the hairball, 2012. URL
http://eagereyes.org/techniques/graphs-hairball. Blog entry.

Carlos E. Scheidegger. So you want to look at a graph, part 1, 2012. URL
http://cscheid.net/blog/so_you_want_to_look_at_a_graph__part_1.
Blog entry.

Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization.
CRC Press, 2013. http://cs.brown.edu/~rt/gdhandbook/.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

