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Part 1: 
Graph-structured data



A simple way to determine the applicability of graph
visualizations is to consider the following question

Is there an inherent relation among the
data elements to be visualized?

If the answer is “yes”,
then the data are
“structured”

If the answer is “no”,
then the data are
“unstructured”

One of the goals of
visualization might be to help
discover relations among data
thru visual means

The data can be
represented by the nodes
of a graph with the edges
indicating the relations

Structured data and graphs



Graph visualization has many areas of application

• We have encountered a file hierarchy on a computer system

A file hierarchy can be represented as a tree (a type of
graph) and it is often necessary to navigate thru the tree
in order to find a particular file



Structured data and graphs (cont.)
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● Other familiar types of graphs are organizational charts, website maps as well 
as history browsing, ...

● In biology and chemistry, graphs are applied to molecular maps, evolutionary 
trees, biomedical pathways, ...

● In dynamic systems analysis, graphs are used to represent Petri nets and 
automata ...

For structured data, graphs are the fundamental
structural representation of the data



Structured data and graphs (cont.)

The size of the graph to view is a key issue in graph 
visualization, large graphs pose problems

● If the number of elements is large, it can compromise performance and reach 
the viewing limits of the platform

There is an interface problem

● While the size of the structures we work with grows, the “windows” through 
which we look at them remains small



Structured data and graphs (cont.)

Even when it is possible to layout and display all the elements, 
the issue of viewability or usability arises
• It will become impossible to discern between nodes and edges

It is not uncommon that usability becomes an issue even 
before the problem of discernability is reached

In general, displaying an
entire large graph may give
an indication of the overall
structure, but it makes it
diffcult to comprehend it



Structured data and graphs (cont.)
Chris Harrison (2006): WikiViz (v3)

http://www.chrisharrison.net/index.php/Visualizations/WikiViz

Visualization of 
wikipedia 
articles up to 
three levels 
deep in the 
hierarchy, 
centered on 
physics



Structured data and graphs (cont.)

http://drewconway.com/zia/2013/3/29/the-value-of-edges-in-complex-network-visualization

relationships 
among artists 
in the last.fm 
database



Structured data and graphs (cont.)
Jer Thorp (2009): NYTimes: 365/360

http://blog.blprnt.com/blog/blprnt/7-days-of-source-day-2-nytimes-36536

New  York Times stories 
from 2009

Probably nodes = entities 
(people/organizations) 
mentioned, edges = 
articles mentioning both 
entities



Structured data and graphs (cont.)

Moritz Stefaner (2009): Citation patterns

http://weloveinfographics.info/post/11903980187/citation-patterns

Nodes on the 
circumference = 
journals arranged by 
field, 

edges = Amount of 
citations between 
different journals.



Structured data and graphs (cont.)

Comprehension and analysis
of data in graph structures is
easiest when the size of the
displayed graph is small

The interface design problem
amounts to deciding what
parts of a large structure to
show and how

● Graph layout issues and limitations with regard to scaleability

● Approaches to navigation of large graphs

Today: An impression of graph drawing and layout algorithms 
from the point of view of information visualization.

Next week: a few important layout algorithms in detail



Part 2: 
Graphs and their 
properties



Graph: definition

A graph G = (V, E) is a set of vertices (nodes) V together 
with a set of edges (lines) E; where E consists of two-
element subsets of V.

For example:
• V = {A, B, C, D}
• E = {{A, B}, {A, C}, {B, C}, {C, D}}

(*) see, e.g., Easley and Kleinberg (2010)



Graph: definition   - example

V = {A, B, C, D}        E = {{A, B}, {A, C}, {B, C}, {C, D}}

One way to draw the graph



Graph: definition   - example

V = {A, B, C, D}        E = {{A, B}, {A, C}, {B, C}, {C, D}}

One way to draw the graph Another way to draw the same graph



Graph: definition, continued   

Undirected or directed edges:

In an undirected graph the edges have no orientation, i.e.,
whenever                    it is implied that                  .

In an directed graph the edges have an orientation, i.e., the 
edges are ordered pairs where                   means that there 
is a directed arc from the node A to the node B.



Graph: definition  - example of directed edges

V = {A, B, C, D}        E = {(A, B), (A, C), (B, C), (C, D)}

One way to draw the graph Another way to draw the same graph



Simple Graph Properties

order: the number of vertices |V|
size: the number of edges |E|
path: a sequence of edges which connect a sequence of vertices
cycle: a path starting and ending at the same vertex
shortest path: a path between two vertices with minimal 
(weighted) number of edges
distance: the number of edges in a shortest path between two 
vertices

See, e.g., Wikipedia for a list of graph properties.

Small-World experiment/Six degrees of separation, Bacon number 
are examples of applied graph theory.



Types of graphs: trees vs. networks

Tree Network

Root

Arc

Node

Leaf
node



Graph labeling/attributes

G = (V, E) is the abstract representation of the graph, all that
matters are the pairwise relations, i.e., which vertices are
connected by edges.

In terms of application (social network analysis, information
visualization, etc), the abstract representation of the graph 
has to be connected to data!



Attributes

Attributes for vertices and edges allow to connect the graph
components to data (loose definition):

A, B the specific attributes; V
A
, and V

B
 the corresponding set 

of possible attribute values.

For example: names of people for the vertices, money flow 
between two people for edges (i.e., the direction of an edge 
can also be seen as an attribute).



US airport network (2010 December)

Passenger flights between airports in the United States. The 
dataset was compiled based on flights in 2010 December 
and is available in the igraphdata R-package.

743 vertices:

name City State Latitude Longitude
1 BGR Bangor ME 44.80 -68.84
2 BOS Boston MA 42.35 -71.00
3 ANC Anchorage AK 61.17 -150.01
4 JFK New York NY 40.63 -73.78
5 LAS Las Vegas NV 36.07 -115.18
6 MIA Miami FL 25.78 -80.30



US airport network (2010 December)

Passenger flights between airports in the United States. The 
dataset was compiled based on flights in 2010 December 
and is available in the igraphdata R-package.

8131 directed edges:

from to Departures Seats Passengers Distance Flights
1 1G4 VGT 52 988 777 79 1
2 A23 HOM 13 78 15 19 2
3 A23 PGM 1 6 1 30 1
4 A27 FAI 4 36 10 91 2
5 A29 ADQ 4 16 8 39 2
6 ABE ATL 29 1785 1481 692 2



Part 3: 
Graph drawing



Graph Drawing

Map the graph attributes to the aesthetics of geometric 
objects, which represent the graph.

Remember: "Everything shown by a visualization should
exist in the data!" (cf. Scheidegger, 2012)

Node-link diagram:
"When you think of a graph, 
you likely already think of a 
node-link diagram - unless 
you're a mathematician." 
Kosara (2012)



“Simple” Graph Representations

1. Combinatorial description

2. Edge list

3. Adjacency matrix

4. Incidence matrix

These representations only require knowledge of the nodes and edges, 
and an order to show them. In contrast, visual drawing of graphs like node-
link diagrams require an on-screen location for every node, and a line or 
curve for every edge.



Adjacency Matrix



Adjacency Matrix

A B C D
A 0 1 1 0
B 0 0 1 0
C 0 1 0 1
D 0 0 1 0

End-nodes

Start-
nodes



Adjacency Matrix

A B C D
A 0 1 1 0
B 0 0 1 0
C 0 1 0 1
D 0 0 1 0

End-nodes

Start-
nodes

Start-
nodes

End-nodes



US Airport Network

Visualization of the adjacency matrix, i.e., which airports are 
connected via one or more flights (ignoring the direction).



Visualization by Graph layout

The basic graph drawing problem can be put simply:
●Given a set of nodes (data) with edges (relations) calculate 
the position of the nodes and the curve to be drawn for 
each edge

● In other words: For a given combinatorial description of a 
graph G, derive a node-link diagram representation in the 
plane.

It’s not a new problem: It has always existed for the simple reason that a 
graph is often defined by its own drawing

Usually, the vertices are represented by symbols such as 
circles or boxes, and each edge is represented by a simple 
open curve between the symbols associated with the 
vertices.



Visualization by Graph layout

"Isn't that a simple problem ...?!?"

There is a plethora of layout algorithms, each using
different techniques and optimizing different criteria

Battista et al. (1994) lists more than 300 publications; the 
Graph Drawing E-print Archive more than 800 publications 
(Oct 2013).

• G. di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph 
drawing: Algorithms for the visualization of graphs, Prentice 
Hall, 1999



Graph layout (cont.)

c

Edge Insertion

Shortest Path

Subgraph (extraction)

Planar subgraph

Acyclic subgraph

(Two Layer)
Crossing Minimization

Barycenter heuristic

Median Heuristic

Split Heuristic

Greedy Insert

Greedy Switch

Cross. Min. Opt.

Rank Assignment

DFS Ranking

Hierarchy Ranking

Hierarchy Layout

Fast Hierarchy Layout

Layout

Visibility representation

Convex Layout

FPP Layout

Schnyder Layout

No crossings

Grid Layout

Ranking

Cross. Min.

Compute Coord.

Tree Layout

Sugiyama Layout

Spring Layout

Tutte Layout

Planar Layout Planar Grid Layout

Compaction

Augment.

Planarization

Planarize subgraph

Insert edges

 

 Mutzel et al.. A library of algorithms for graph drawing,1998



Graph drawing: Optimization algorithms

Usually, a graph has infinitely many different drawings. 
However, the usefulness of a drawing of a graph depends on 
its readability.

Readability issues are expressed by means of aesthetics, 
which can be formulated as optimization goals for the 
drawing algorithms.

A fundamental and classical aesthetic is the minimization of
crossings between edges.

(*) cf. Battista et al. (1994)



Graph drawing with fixed node locations
Example: US airport network



Graph drawing with fixed node locations
Example: US airport network

Airways.



Passenger arrival of the 25 busiest airports 
(difference linearly scaled).

Graph drawing with fixed node locations
Example: US airport network



Arrival of free (blue) versus taken (red) 
seats of the 25 busiest airports.

Graph drawing with fixed node locations
Example: US airport network



Part 4: 
Layout for tree-
structured graphs



Graph layout (cont.)

Trees have received
most of the attention

A classical tree layout will
position children nodes below
their common ancestors

Ernst Haekel (1879):
Pedigree of Man
(here children are above the ancestors)



Graph layout (cont.)

 

This layout satisfes a
graph property referred
to as planarity
• It is possible to draw a tree on
a plane without edge crossings

It fulflls many aesthetic rules imposed on the fnal layout
• Nodes with equal depth can be placed on the same horizontal line,
distance between sibling nodes can be often fiied, ...
• The drawing clearly refects the intrinsic hierarchy of the data



Graph layout (cont.)

 

 

The Reingold and Tilford (1990, 1997) algorithm for trees
is a tidy example for achieving these aesthetic goals
( details: http://emr.cs.iit.edu/~reingold/tidier-drawings.pdf )

Isomorphic subtrees are laid
down analogously

Distance between nodes is a
parameter of the algorithm

Only a few hundred nodes and the layout
is already very dense

Difficult interaction with the graph (too little space)



Graph layout (cont.)

 

Radial positioning places graph
nodes on concentric circles,
according to their depth in the tree

A subtree is can be laid out over
a sector of the circle so that two
adjacent sectors do not overlap

The Eades algorithm (1992) performs this layout

The Reingold-Tilford algorithm generates a more classical 
drawing
• In the radial positioning it is less clear where the root of the tree is
and one might eiplore the graph in a less hierarchical way



Graph layout (cont.)
 

 

 

 

Hierarchy can be recovered using
the balloon view layout
• Sibling subtrees are drawn in circles
centered at their parent nodes
• At the cost of node details

It’s a variant of the radial layout, it can
be constructed by projecting a conetree 
(a 3D graph) onto a plane

• Parent at the apei of a cone, and its
children spaced evenly along its base



Graph layout (cont.)

Tree layout algorithms are often
characterized by low complexity
and simple implementation
• They work well and they are applicable
only for relatively small graphs

One very popular technique is to display larger
graphs in three dimensions rather than two
• The idea is that the eitra dimension gives literally more space and
eases the problem of displaying large structures
• The viewer can navigate to find a view without occlusions



Graph layout (cont.)

The simplest approach is
to generalize classical 2D
layout algorithms for 3D
• 3D radial tree algorithms

In spite of the apparent simplicity, displaying
trees in 3D can introduce new problems

● Additional visual cues (occlusion, transparency, depth, ...)

● Minimizing edge crossing for multiple perspectives may not be as rewarding 
as hoped



Graph layout (cont.)

In spite of all the technical development
and the obviously attractive features, ...

3D graph visualization techniques have still signifcant 
diffculties

• The main reason lies with the inherent cognitive
issues of 3D navigation/interaction in 2D screens

• Perceptual and navigational conficts



Graph layout (cont.)

The hyperbolic layout of trees is one of the recent forms
of layout (Lamping et al. and Munzner in the mid-late 90’s)

Developed with visualization and
interaction in mind
• It provides a distorted view of a tree layout

• It resembles the effect of using a 
    fish-eye lens
• It can be implemented in either 2D or 3D



Graph layout (cont.)

Hyperbolic views are radically
different, due to their different
geometrical background

This distorted view makes it
possible to interact with
potentially large trees making it
suitable for some demanding
real-world applications



Graph layout (cont.)



Part 4: 
Seriation



Addendum: Seriation

Seriation is to finding a suitable linear order for a set of 
objects given data and a loss or merit function (in order to 
reveal structural information).

Can be done without creating a layout

(*) cf. Hahsler et al. (2008)



Seriation - Combinatorial optimization problem:

Given is a symmetric (dissimilarity/binary) matrix D = (dij ) 
where dij for                    represents the dissimilarity between 
objects i and j , and dii = 0 for all i .

The permutation function    is a function which reorders the
objects in D by simultaneously permuting rows and columns.

The seriation problem is to find a permutation function  
which optimizes the value of a given loss function L or merit 
function M:

Hard problem: the number of possible permutations for n 
objects is n!.



Seriation - Combinatorial optimization problem:

Partial enumeration methods: Search for the exact 
solution in a clever way; independent of the loss/merit 
function.

Traveling salesperson problem solver: Search for a 
Hamilton path (i.e., a path where each vertex is visited 
once); wide array of heuristics are available.

Bond energy algorithm: Rearrange columns and rows of a 
matrix such that each entry is as closely numerically related 
to its four neighbors as possible; simple heuristic.

Hierarchical clustering: Use the order of the leaf nodes in a 
hierarchical clustering; simple heuristic.

(*) for details see Hahsler et al. (2008)



Seriation example - US Airport Network



Seriation example - US Airport Network

Color indicates whether flight is within the same state (blue) 
or between two different states (red).



Note: Seriation can be used for vectorial data 
too...

Iris data, unordered Iris data, ordered
distance matrix distance matrix
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Part 5: 
Layout for general-
structured graphs



Graph drawing: Optimization algorithms

Popular graph layout strategies:
• force-based
• circular
• tree-based



Force-Directed layout algorithms

Force-directed methods define an objective function which 
maps each graph layout into a number in        representing 
the energy of the layout.

This function is defined in such a way that low energies 
correspond to layouts in which adjacent nodes are near 
some pre-specified distance from each other, and in which 
non-adjacent nodes are well-spaced. A layout for a graph is 
then calculated by finding a minimum of this objective 
function.

(*) Tamassia (2013, Chapter 12)



US airport network

Kamada-Kawai layout with weighted edges based on the distance.



US airport network

Kamada-Kawai layout with weighted edges based on the distance; vertex
sizes based on total passengers, vertex color based on state.



How to cure the Hairball?

Possible parts to play with:

• Visual attributes of edges and vertices

• Layout algorithm <---- we will concentrate on this

• Edge bundling

• Interaction <---- we will also talk about this



Hive plots

http://www.hiveplot.net/



Circos

http://circos.ca//



Part 6: 
Interactive visualization 
of graphs



Navigation and interaction

Navigation and interaction are essential in infoviz

• Layout algorithms alone cannot overcome the problems raised by the 
large sizes of the graphs occurring in many applications



Zoom and pan (cont.)
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Zoom and pan are conventional tools in visualization
• Indispensable when large graph structures are to be eiplored

Zooming is well-suited for graphs, because the graphics
used to display them are usually fairly simple
• Mostly lines, sometimes curves, and other simple geometric forms



Zoom and pan (cont.)

Zooming can take on two main forms
• Geometric: simply provides a blowup of the graph content

• Semantic: information content changes and more details
are shown when approaching a particular area of the graph

http://ucjeps.berkeley.edu/map2.html

Zoom and pan is thus conceptually simple, but it might create 
problems when used in interactive environments



Zoom and pan (cont.)

Road map of Europe, the user has zoomed into the area
around London but wants to change to a view of Berlin
• Doing this without changing the zoom factor (at least temporarily)
might be slow (zoom out, pan to Berlin and zoom in again)
• The user wants smooth changes (perform zoom and pan in parallel)

When zooming in, the view expands exponentially fast
and the target point moves always faster than the pan
can keep up with

The net result is a target that is approached non-monotonically



Zoom and pan (cont.)

x

y

z

 

Space-scale 
diagrams

Furnas and Bederson proposed an
elegant solution to alleviate the effects
of the zoom and pan problem

Create copies of the original 2D
picture, one at each possible
magnification and stack them up
• Combinations of (continuous) zoom and
pan actions are described as paths
• An optimal path in this abstract space 
can be found e.g., thru minimum path 
length



Focus and context

Focus+Context 
techniques

They do not replace zoom and pan but rather complement them

Another well-known problem with zooming is that if
one zooms on a focus, all contextual information is lost

• The loss of conteit can become a considerable usability obstacle

A set of approaches allow
to focus on some detail
without losing the context



Focus and context (cont.)

Graphical fsh-eye distortion is
a popular technique for F+C

• Enlarging the area of interest and
showing other portions of the image
with successively less detail

Conceptually, the graph is mapped onto the
plane and a “focus” point is defned by the user
• The distance from the focus to each node of the tree is then
distorted by a function and the distorted points and
connecting edges are displayed



Focus and context (cont.)

 

 

 

 

 

 

 

 

 

 

The created distortion depends on
the form of the distorting function

Two basic variations:

• Polar distortion: It applies to the nodes
radially in all directions, starting from the
focus point

• Cartesian distortion: It is applied on each
direction (i and y) independently before
establishing the final position of the nodes



Focus and context (cont.)

This simple but powerful technique is an important
form of navigation but has at least one major pitfall
• The essence of the fish-eye is to distort the position of each node

• If the distortion is faithfully applied, straight edges connecting the
nodes will also be distorted, the result is a general curve

Standard graphic systems don’t seem to offer the
necessary facilities to transform lines into curves
• Mostly because of the prohibitively large number of calculations

• ... so, we get straight-line edges and distortion only for nodes

The consequence of this solution is edge-crossing



Focus and context (cont.)

Interaction with fsh-eye means changing the position of
the focus and/or modifying the distortion parameters

The fsh-eye technique is independent of the layout
algorithm and it is defned as a separate postprocessing
step on the graphical layout of the graph
• (+) modular organization of the software implementation

• (-) may destroy the aesthetics governing the layout algorithm

Appropriate distortion possibilities can
be built into the layout algorithm itself
• Conteit+Focus effects that merge with Layout



Focus and context (cont.)

The hyperbolic layout does just that
• Whether in 2D or 3D, it produces a distorted
view with a focal point at some fiied location
in the graph, in a fish-eye view sense

However, proper interaction with the 
view means changing the position of the 
center point within the graph
• The root has been shifted to the right,
putting more focus on the nodes that
were toward the left
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