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Neighbor Embedding Methods continued



  

This Lecture

Neighbor embedding by generative modeling

Some supervised neighbor embedding approaches

Fast approximations for embedding large data

Quality assessment techniques



  

Part 1: Neighbor embedding as 
generative modeling



Neighbor embedding by 
generative modeling 

We've seen that neighbor embedding can be done by minimizing 
information theoretic divergences (Stochastic Neighbor Embedding)

We've seen that neighbor embedding can be optimized for an 
information retrieval task (Neighbor Retrieval Visualizer)

In machine learning, a prominent approach is generative modeling: 
maximization of the likelihood of observations, given a probabilistic 
model of the observations

Can neighbor embedding be done by generative modeling? Yes!



Neighbor embedding by generative modeling 
Most probabilistic generative models generate the observed data: 
original feature values of points. Here we will not generate the original 
features, instead we generate the original neighbor relationships.

Stochastic Neighbor Embedding can be seen as a generative model 
of the original neighbor relationships in the input space.

This is a sum over observed center-neighbor pairs, weighted by 
their proportional counts p

ij
, We sum the log-likelihoods of those 

observations!

SNE maximizes likelihood of observing the original neighbor pairs. The 
generative model gives neighbor probabilities, based on locations of 
points on the display.

Const.    + 



NeRV by generative modeling 
Stochastic Neighbor Embedding can be seen as a generative model, 
but it only focuses on recall (misses) because its cost function is 
dominated by misses.

Idea: change the retrieval model so that misses become less 
dominant, so that the model can also focus on false positives. 

New retrieval distribution: mixture of the user model and an 
explaining away model.

Cost function is 
log-likelihood 
(generative modeling):

new retrieval
distribution

plain user
model

explaining away model
= true neighborhood distribution

amount of 
explaining away



 
fMRI measurements of 
6 adults who received 
four types of stimuli: 
- tactile (red) 
- auditory tone (yellow) 
- auditory voice (green) 
- visual (blue).  

Visualization by the new 
method, strong 
explaining away used 
during training. Different 
stimuli types become 
separated in the 
(unsupervised) 
visualization.

Image from ref. [1]



  

Part 2: Supervised neighbor 
embedding



  

Neighborhoods in Supervised Linear 
Projections

Consider finding a supervised parametric mapping, here a linear 
projection, whose aim is to separate classes of data as well as 
possible.

Linear discriminant analysis does this by making very rough 
assumptions about the class distributions: each class is 
Gaussian, and they are assumed to have the same covariance 
matrix. Optimizes abstract function: ratio of between-class 
variance to within-class variance

Can we build a method where 
1) we still keep the projection linear, but we don't make any 
parametric assumptions about the class distributions?
2) task-based approach: we optimize the projection for a task

Yes, and it turns out this is related to neighborhoods.

Metric MDS stress function

Other variants have modified which distances are most 
important to preserve: for example Sammon's mapping 
considers small distances the most important to preserve. But 
the aim is still to preserve distances.

Are distances the important thing to the analyst, if the aim is 
information visualization?



  

Neighborhoods in Supervised Linear 
Projections

- Idea: use a linear projection for the mapping
- Use a nonparametric class predictor (conditional class 
density estimator) operating on the display to estimate 
classification performance. 
- Optimize likelihood of observed class labels on the display.

Nonparametric estimation makes the class predictions local: 
they depend on local arrangements of the classes in each small 
neighborhood.



  

Discriminative Components of Data

- Mapping: y = f(x) = wTx

- Conditional class 
  density estimator:

 

- Optimize log-likelihood of observed class labels on the display.

Nonparametric estimation makes class predictions local: they 
depend on arrangement of classes in each small neighborhood.



  

Discriminative 
Components 
of Data

Comparison 
on a 
handwritten 
digit data set

Image from ref. [2]



  

Supervised Distances

In distance-based methods, a basic form of supervision would 
change input distances to d(i,j)=1[class(i)=class(j)].
Potential problem: if supervised distances are based on classes 
only, originally far-away same-class points become collapsed, 
and originally close-by different-class points become separated.
The collapsed distances  tell nothing about the arrangement of 
the points in the feature space.---->Not good for exploring?

Idea: create a topology-preserving supervised metric, so that:
- class information is used locally (for infinitesimally small 
  distances). 
- local distances are extended to global ones as geodesics over 
  the neighborhood graph
- does not collapse originally far-away points, or rip apart 
originally nearby points



  

The Learning Metric

The Learning Metric is a supervised “topology-preserving” 
distance metric learned from class probabilities
- a Riemannian metric

- assume we have a class estimator

- local distance: 

- global distance: 

d L(γ(t ) ,γ(t+dt ))dt



  

The Learning Metric

 

Image from
J. Peltonen's
D.Sc. thesis



  

Supervision for the Self-Organizing Map

Once you have a topology-preserving metric, you can apply it 
when distances are needed.
 

In SOM, distance is used to 1) find the winner node for an input, 
and 2) compute a gradient, to adjust nodes towards the input.
- Use the learning metric for the distance.
- The natural gradient is same as the Euclidean metric gradient

Traditional SOM in
SOM learning

metric

Image from ref. [3]



  

Supervision for NeRV

Simply compute the input neighborhoods based on distances in 
the learning metric. 

Image from ref. [4]



Input neighborhood Output neighborhood

Tradeoff measure = NeRV cost function

Restrict y
i
 = WTx

i

Minimize cost with respect to projection W

NeRV with a linear projection 



Input neighborhood Output neighborhood

Tradeoff measure = NeRV cost function

Restrict y
i
 = WTx

i

Minimize cost with respect to projection W

NeRV with a linear projection 

Features do not 
need to be from 
the same source 
as input 
neighborhoods.

Input 
neighborhoods = 
supervision



  

Part 3: Scalable neighbor 
embedding



  

Scalability Issues

Neighbor embedding approaches typically need to evaluate all 
pairwise distances in the display during iterative optimization. 
This gives O(N2) computation time per iteration for N data 
points. (Some manifold learning approaches need to invert 
kernel matrices which can take O(N3) computation time!) 

In large data sets (millions of points) this takes prohibitively 
much time – computation would not finish in a reasonable time. 
In interactive applications very fast changes to plots may be 
needed.

----> Need faster computation, with less than quadratic 
dependence on data set size.

Naive approach: subsample the data set. Problem 1: can lose 
interesting details of the data distribution and relationships. 
Problem 2: in many methods, not easy to embed left-out points.



  

Solution approach 1 (for NeRV)

The cost function is based on several sums over neighbors:

Suppose we have estimated the data distribution in the input 
and output. Then we can replace each sum over j with an 
expected value of the sum.

Computing the expected value depends on the complexity of 
the data distribution, not on the amount of observed samples ----
> computational speedup!

Simple approach: estimate a Gaussian mixture model in the 
original space. Can be done in O(N) time. Estimate the 
corresponding locations/widths of mixture components in the 
output: can be done in O(N) time each iteration. (All times also 
depend on complexity of the mixture.)

∑
i
∑
j≠i

p j∣i log
p j∣i
q j∣i

∑
i
∑
j≠i

q j∣i log
q j∣i
p j∣i



  

Solution approach 1 (for NeRV)

Results not as good as original NeRV but faster

Image from ref. [6]



  

Approach 2 (Barnes-Hut for SNE/NeRV)

Use a hierarchical clustering to approximate locations on the 
output display. Hierarchical clustering is very fast to compute in 
2D by a QuadTree.

Hierarchical clustering 
around point i: nearby 
clusters from deep levels 
of the hierarchy (precise,
lots of clusters), far-off 
clusters from upper levels
(rough approximation, 
fast computation).

Approximate location of a neighbor by its cluster center. ----->To 
compute costs/gradients, it is enough to sum over cluster 
centers weighted by their point totals, instead of summing over 
individual neighbors. ----> Speedup!

Image from ref. [7]



  

Approach 2 (Barnes-Hut for SNE/NeRV)

For each centerpoint i, approximate location of a neighbor by its 
cluster center. ----->To compute costs/gradients, it is enough to 
sum over cluster centers weighted by their point totals, instead 
of summing over individual neighbors. ----> Speedup: O(n log n)

Barnes-Hut 
approximation 
often used in 
N-body 
problems in 
physics



  

Approach 2 (Barnes-Hut for SNE/NeRV)

t-SNE

Image from 
ref. [7]



  

Approach 2 (Barnes-Hut for SNE/NeRV)

S-SNE NeRV

Image from ref. [7]



  

Approach 2 (Barnes-Hut for SNE/NeRV)

S-SNE t-SNE

Image from ref. [7]



  

Part 4: Quality assessment of 
visualization



  

Quality Assessment

As we discussed on the previous lecture, the purpose of 
visualization could be to “generate insight” about data. Most 
methods use abstract criteria to optimize their visualizations; 
NeRV optimizes the visualization for a concrete retrieval task.

- I argue that if the actual task the visualization will be used for 
is known, then performance in that task is the ultimate measure 
of quality. 

- However, often the precise task is too high-level to be 
specified exactly, or the visualization may be used for several 
tasks. It is then worthwhile to measure quality of visualization by 
several indirect measures of quality that have been proposed.



  

Quality Assessment

Subjective qualitative appeal: whether the plots “look good”. 
May be hard to judge if good-looking plots are truthful. Not 
quantitative: may be hard to compare severity of visual 
artefacts.

Abstract internal measures: internal abstract cost funtions of 
different methods. Typically each method will be good on its 
own function. From abstract functions it's hard to say why one 
function is more relevant than another. Useful for convergence 
analysis, but not for comparing methods.

Task-based internal measures: cost functions of e.g. NeRV 
(information retrieval). Distance preservation can be considered 
a task-based measure for a task of measuring distances. 
Typically again each method is good on its own function. Now at 
least the tasks are understandable, so one could know which 
tasks the analyst will perform. 



  

Quality Assessment

Reconstruction error:

Assumes that original coordinates are the important thing to 
reconstruct. Requires an inverse mapping, many methods only 
provide output locations of training points.
Reconstruction error is essentially the internal cost 
function of e.g. autoencoder neural networks.

Classification error on the display:
Use some classifier (e.g. k-nearest neighbor classifier) to 
measure how well classes are separated on the display. 
Requires labeled data. Can be a good measure if the class 
labels were not used in training.



  

Quality Assessment

Many of the measures can be analyzed based on a co-
ranking matrix:

each element is a count of how many neighbors have rank k in 
the input space and l in the output space. Computing this takes 
O(N2 log(N)) time.

Rank error:                   positive-->intrusion, negative->extrusion
    (cf. false neighbor) (cf. missed neighbor)
   K-intrusion/extrusion: when original/output 

      rank is less than K

rank of j as a 
neighbor of i in the 
input space

rank of j as a 
neighbor of i in the 
output space

Note: Some errors on this slide were 
corrected after the lecture recording.



  

Quality Assessment

Preservation of data structure: measure preservation of 
higher-level structural concepts in the data.
- topographic product, topographic function in SOMs

Neighborhood based measures:

- Trustworthiness and continuity (T&C): essentially 
precursors to the information retrieval measures in NeRV.

rank of j as a neighbor 
of i in the input space

rank of j as a neighbor 
of i in the output space

points j that are 
neighbors of i in the 
output space but not 
in the input space

points j that are 
neighbors of i in the 
input space but not in 
the output space

input-space ranks k>K and 
output-space ranks l<=K

input-space ranks k<=K and 
output-space ranks l>K

Note: Some errors on this slide were 
corrected after the lecture recording.



  

Quality Assessment

- mean relative rank errors (MRREs)

- local continuity meta-criterion (LCMC)

output-space rank l <= K, 
any input-space rank

input-space rank l <= K, any 
output-space rank

output-space rank l <= K, 
any input-space rank

output-space
neighbors

input-space
neighbors

output-space rank

output-space rank

Note: Some errors on this slide were 
corrected after the lecture recording.



  

Quality Assessment

Different criteria use different parts (shaded) of the co-ranking 
matrix:

Image from ref. [8]



  

Quality Assessment

Some observations from artificial data -type experiments:
- NLM tends to produce intrusive plots, CCA works in an extrusive 
way. 

Image from ref. [8]



  

Quality Assessment, retrieval-based 
measures

LCMC focuses on true positives, T&C focus on false positives 
and false negatives, MRREs encompass positives and 
negatives

MRREs can be combined as 
 

“overall quality”

 
“intrusive or extrusive”

And T&C can be combined similarly



  

Quality Assessment,
retrieval-based 
measures

Image from ref. [8]



  

Quality Assessment, retrieval-based 
measures

Mean smoothed precision, mean smoothed recall: the two 
measures proposed for NeRV.

F-measure: 2*(precision*recall)/(precision+recall)
Combined measure, is low if either precision or recall is low

Precision-recall curve: rank all neighbors in order of retrieval, 
predicted likeliest neighbors first. Use different cutoffs to select 
the retrieved set, calculate precision and recall at each cutoff. 
----> Curve of precision vs recall: high recall-->low precision

Rank-based mean smoothed precision, rank-based mean 
smoothed recall: same as the measures in NeRV, except 
instead of distances we use ranks of distances. Less sensitive 
to the precise distances.



  

References (pictures were from these papers)

1. Jaakko Peltonen and Samuel Kaski. Generative Modeling for Maximizing Precision 
and Recall in Information Visualization. In Proceedings of AISTATS 2011.

2. Jaakko Peltonen and Samuel Kaski. Discriminative Components of Data. IEEE 
Transactions on Neural Networks, 2005.

3. Jaakko Peltonen, Arto Klami, and Samuel Kaski. Improved Learning of Riemannian 
Metrics for Exploratory Data Analysis. Neural Networks, 2004.

4. Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel Kaski. 
Information retrieval perspective to nonlinear dimensionality reduction for data 
visualization. Journal of Machine Learning Research, 2010.

5. Jaakko Peltonen. Visualization by Linear Projections as Information Retrieval. In 
Proceedings of WSOM 2009.

6. Jaakko Peltonen and Konstantinos Georgatzis. Efficient Optimization for Data 
Visualization as an Information Retrieval Task. In Proceedings of MLSP 2012.

7. Zhirong Yang, Jaakko Peltonen, and Samuel Kaski. Scalable Optimization of Neighbor 
Embedding for Visualization. In Proceedings of ICML 2013

8. John A. Lee and Michel Verleysen. Quality assessment of dimensionality reduction: 
Rank-based criteria. Neurocomputing, 2009


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

