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Motivation – metric learning

● Metric learning means learning a better metric (better distance 
function) between the original high-dimensional data than the 
original metric that one starts with 

● “Better” can mean many things, for example better separation 
between classes of data, better correspondence to some 
known properties, etc.

● Metric learning is not dimensionality reduction by itself. 
However, it has clear connections to dimensionality reduction, 
and can be used as part of dimensionality reduction.



Motivation – metric learning

● Many statistical methods  rely on distances as much or more 
than they do on feature values:
● nearest neighbor regression/classification uses distances to 

find the nearest neighbors
● many clustering approaches such as k-means use 

distances as part of the algorithm to optimize the clustering
● in information retrieval, “best” results are often the ones 

most similar to the query according to some distance
● Learning a good distance function between features can thus 

be as important as learning which features to use.
● Handcrafting good metrics is hard, automatic learning from 

data is needed
● Computer vision, information retrieval, and bioinformatics (e.g. 

learning dissimilarities between DNA sequences) are 
prominent application areas of metric learning



Types of metrics

● Metrics can be simple or complicated functions of data 
features. 

● The Euclidean metric is a simple squared sum of coordinate 
differences.

● Norm-independent distance is related to cosine similarity:



Types of metrics

● A Mahalanobis metric is described by a positive semidefinite 
metric matrix A:

● If A is diagonal the metric is just feature weighting:

● The traditional Mahalanobis metric uses A=C-1 where C is the 
covariance matrix of the data. This metric appears inside the 
exponential term of a multidimensional Gaussian density function:

● We call the metric with any A a Mahalanobis metric.



Types of metrics

● Adjusting a Mahalanobis metric can make it easier to, for example, 
distinguish between classes of data: assume d(x,w) = (x-w)T A (x-w)

● A non-diagonal Mahalanobis metric can take into account not
just feature importances, but importance of feature combinations
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Types of metrics

● Nonlinear metrics can be described in several ways:

Globally through an explicit transformation: For example 
any nonlinear transformation y = f(x), followed by an Euclidean 
or Mahalanobis metric between the transformed features.
● Thus learning any transformation f for the data (followed by 

a traditional metric) can be seen as learning a metric for the 
data:

● The output of the transformation can be higher-dimensional 
or lower-dimensional than the original features

● In particular, learning any dimensionality reduction (feature 
selection/feature extraction) can be seen as learning a 
metric where the left-out features have no effect on 
distance.



Types of metrics

● Nonlinear metrics can be described in several ways:

Globally through an implicit transformation: Sometimes the 
transformation does not need to be known, as long as the 
metric between the transformed features is known.
● Kernel methods like kernel PCA use kernel functions to 

compute inner products in a transformed space. 
● Valid kernel functions (so-called “Mercer kernels”) always  

correspond to inner products in some transformed space, 
even if the transformation is unknown/hard to compute.

● Distances can be computed using kernels only: assume f is 
the unknown nonlinear function and                   is the 
known kernel function. Then the distance can be computed 
as        



Types of metrics

● Nonlinear metrics can be described in several ways:

Alternatively, a metric can be described locally:
● In each very small (infinitesimally small) neighborhood N(x) 

of the feature space around point x, distances inside the 
neighborhood are described by a Mahalanobis metric with a 
metric matrix A(x). 

● Distances between two far-apart points x1, x2 are given by 
integrals of local distances: for any path from x1 to x2, the 
distance along the path is the integral over local distances 
along the path.

The shortest path (minimal integral) defines the distance 
d(x1, x2).

Shortest path may be difficult to compute analytically, but 
can be approximated.



Properties of a metric

● In general, any function                                 between pairs of 
data points can be used as a distance function, as long as it 
satisfies the properties of a metric:
● non-negativity (separation axiom): 
● coincidence axiom: 
● symmetry: 
● triangle inequality: 

● The previous examples (Euclidean, cosine, Mahalanobis, 
transformation + Euclidean/Mahalanobis, kernel-based, local 
Mahalanobis) all satisfy non-negativity, symmetry, and triangle 
inequality.
● However, they can cause several x,y to have zero distance 

from each other (e.g. Mahalanobis with some zeros on the diagonal)

● The satisfy the coincidence axiom if we consider all points 
at distance zero from each other to be “the same point”



How to Learn a Metric

● Metric learning can be done either in a supervised way or an 
unsupervised way.

● Unsupervised metric learning would mean optimizing a metric 
(e.g. optimizing the Mahalanobis matrix, or optimizing a data 
transformation) to make the data “look interesting” in the new 
metric: for example, to make the data appear well clustered.

● Roughly speaking: try several metrics, compute for 
each metric an “interestingness score” such as a 
clustering criterion, choose the metric that gives the 
best score. 

● We focus mostly on supervised metric learning, where there is 
some annotation available for some of the data points. 

● Intuitively, the annotation tells which pairs of points should 
have small distance and which ones should have large 
distance.



How to Learn a Metric
● Different kinds of annotations: 

Class labels: some subset of training data points has a known 
class label, out of a set of NC different classes. For example 
data points might be pictures of people, for some pictures the 
identity of the person is known.

Must-link / cannot-link constraints: for some pairs of training 
data points, it is known that they should be similar or dissimilar.

For example video footage might contain several pictures of 
the same person, and the pictures can be considered “similar” 
even if the person's identity is unknown. 
Or: in social data sets data points might be people, and some 
people are known to be “similar” (friends/colleagues, etc.)

● Some methods instead use constraint triplets as annotation:



How to Learn a Metric
● Class label annotation can be turned to pairwise constraints 

(“same-class points are similar, different-class points are 
dissimilar”), but class labels can provide more information. 
Constraint-based methods can be called “weakly supervised” 

● Semi-supervised methods use also the unlabeled data

● Some approaches learn just a distance matrix (or kernel matrix) for 
a finite data set, but the ones we discuss learn an actual distance 
function that generalizes to new data points.

● For example, metrics may be learned from a data subset 
that has annotations, and then applied to all data

 

Illustration of metric learning
    from pairwise constraints

Pictures from A. Bellet, A. Habrard, and M. Sebban, ArXiv:136.6709, 2013.



How to Learn a Metric
● Differences between methods are: what kind of annotations are 

used, what form of metric is learned, and what cost function is 
used to evaluate how well the metric fits the annotations

● Other differences include optimization details (optimality, 
scalability), and whether the metric learning method can 
inherently perform dimensionality reduction

Pictures from A. Bellet, A. Habrard, and M. Sebban, ArXiv:136.6709, 2013.



Using the New Metrics for Dimensionality 
Reduction or Visualization

● If we have a dimensionality reduction/visualization method that 
works based on distances (or based on a distance function), 
we can often simply give the optimized distances as input.

● For example the “Sammon's Mapping in the Learning Metric” 
method (Sammon-L; Jaakko Peltonen, Arto Klami, and Samuel 
Kaski, “Improved Learning of Riemannian Metrics for 
Exploratory Data Analysis”) infers the supervised Learning 
Metric, computes pairwise distances in it, and gives them as 
input to a traditional Sammon's mapping algorithm.

● One could similarly give supervised distances like the Learning 
Metric as input to Multidimensional scaling, or Curvilinear 
Component Analysis.



Dimensionality Reduction by Learning a Metric?

● We already saw that learning a dimensionality reduction 
corresponds to learning a metric where left-out features don't 
affect distances.

● It is possible to do the reverse: by learning a metric, we can tell 
which features are important to keep, and which can be left 
out.

● For example: if, in a diagonal Mahalanobis metric matrix A, 
some features have very small weights (close to zero), they 
don't affect distances much and could be left out.



Dimensionality Reduction by Learning a Metric?

● In general: if the Mahalanobis metric matrix A has an 
eigendecomposition A = VDVT, where D is diagonal, then 

where D1/2 is D with square roots taken from diagonal entries.

● Thus learning Mahalanobis metric corresponds to learning a 
linear data transformation!

● If some eigenvalues (diagonals of D) are zero, then the metric 
effectively performs dimensionality reduction

● Some methods learn a metric with penalties that encourage 
features to be left out.



Method 1: Informative Discriminant Analysis / 
Neighborhod Component Analysis

Method first proposed in Samuel Kaski and Jaakko Peltonen, ”Informative 
discriminant analysis”, in proceedings of ICML 2003. Soon after proposed in 
Jacob Goldberger, Sam Roweis, Geoffrey Hinton, Ruslan Salakhutdinov, 
“Neighbourhood components analysis”, proceedings of NIPS 2004.

Idea: assume training data have labels. Learn a Mahalanobis 
metric matrix A. Maximize log-likelihood of predicting labels of a 
point from its nearby neighbors in the metric. (This method is thus 
a maximum-likelihood method to estimate the metric.)

Suppose the density of each class can be written as a mixture of 
multivariate Gaussian distributions with class-dependent weights:
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Method 1: Informative Discriminant Analysis / 
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And the log-likelihood of observed class-labels ci of points xi is

                                      which can be maximized with respect to A



Method 1: Informative Discriminant Analysis / 
Neighborhod Component Analysis

The locations and class-weights of the Gaussians can come from 
a previous density estimation. Alternatively, a simple way is to set 
one Gaussian at every training data point, and set its class 
weights according to the class of the data point:

Then, to compute               leave out the i:th term from the sums
(leave-one-out procedure)

The log-likelihood can be maximized with respect to A by gradient 
methods. 

And the log-likelihood of observed class-labels ci of points xi is

                                      which can be maximized with respect toA



Method 1: Informative Discriminant Analysis / 
Neighborhod Component Analysis

Performance of IDA/NCA can be measured for example by K-
nearest neighbor classification accuracy on a test set not used for 
learning the metric.

IDA/NCA can give better results than LDA, because it does not 
make simple single-Gaussian assumptions about classes, and 
because it directly maximizes conditional class log-likelihood.

IDA/NCA compared to 
other metrics on six data 
sets. It clearly outperforms 

 the Euclidean metric and is  
    among the best metrics.

Pictures from J. Goldberger, S. Roweis, G. Hinton, R. 
Salakhutdinov, proc. NIPS 2004.



Method 1: Informative Discriminant Analysis / 
Neighborhod Component Analysis

IDA/NCA can also be used for dimensionality reduction by restricting the 
rank of the metric matrix A, or by directly optimizing A as a product of a 
linear projection matrix W, A=WWT. The probabilities and cost function 
are computed the same as before. The matrix W can be used to project 
data to lower dimensionality.

Pictures 
from J. 

Goldber
ger, S. 

Roweis, 
G. 

Hinton, 
R. 

Salakhu
tdinov, 

proc. 
NIPS 
2004.



Method 2: Learning from Pairwise Comparisons
● A metric tells which points are similar (they have small distance 

in the metric) and which points are dissimilar (they have large 
distance). The desired metric is unknown - we want to learn it.

● If we have examples of similar point pairs and examples of 
dissimilar point pairs, can we learn a metric from them?

● Yes! Use probabilistic modeling: given a metric, define a 
probability that two points in the metric will be labeled 
similar vs. dissimilar. Then optimize the metric to maximize the 
likelihood of the observed pairs!

● For example, use a Mahalanobis metric (matrix A = WWT) and 
a logistic probability:

● Then maximize the log-likelihood of observed similarities with 
respect to elements of W, e.g. by gradient descent:

Some pictures from Hoi, Liu, Lyu, and Ma,  in proceedings of CVPR 2006.

psimilar(x i , x j)=
1

1+exp((xi−x j)
T A (x i−x j)−threshold)

maxW [∑(xi , x j)∈Ssimilar
log psimilar(xi , x j)+∑(xi , x j)∈S dissimilar

log(1−psimilar (xi ,x j))]

“points closer 
than threshold 
are probably 
called similar”



Method 2: Learning from Pairwise Comparisons
● This idea was used for interactive visualization (Peltonen et al.)
● Experts inspected a scatterplot of scientific documents and 

pointed out pairs of documents that were similar or dissimilar. 
● A metric was learned for document features (=unigram 

content)
● The metric was learned based on the pointed-out pairs, and a 

new visualization was constructed in the new metric.
● The experts inspected again, 

and pointed out more pairs.
● The metric and visualization 

converged to focus on 
important features of data.

● The metric was learned by 
a so-called variational 
Bayes algorithm (outside 
the scope of the course) 
rather than maximizing 
likelihood, but the idea 
is essentially the same.Pictures from Peltonen et al., Information Retrieval 

Perspective to Interactive Data Visualization, in Eurovis 2013. 



  

Method 3: Relevant Component Analysis
● Proposed in Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna 

Weinshall, “Learning Distance Functions using Equivalence Relations”, in 
proceedings of ICML 2003, and in Shental, Hertz, Weinshall, Pavel, 
“Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

● Idea: data often comes in “chunklets” known to arise from the 
same unknown class. For example several images from a  
video sequence of a person: all images have the same person.

● Given a set of pairwise “must-link” constraints (“x1 and x2 have 
the same unknown class”), identify the chunklets by transitive 
closure of the constraints:

chunklet 1

chunklet 2

chunklet 3

Must-link constraints shown as green lines

+
+

+
+

-

-

-

--
+

chunklet 1

chunklet 2

chunklet 3

Example of underlying classes of the chunklets



  

Method 3: Relevant Component Analysis
● Given N chunklets (data subsets) Hn, each of size Hn , compute 

the average within-chunklet covariance:

● Use the inverse of the within-chunklet covariance as a 
Mahalanobis distance matrix!  (Alternatively: compute a 
corresponding data transformation, we saw earlier that 
Mahalanobis metrics correspond to linear data 
transformations)

● This means that distances grow slowly in directions where 
within-chunklet variance is large, and fast in directions where 
within-chunklet variance is small. If chunklets are shaped like 
the classes they come from, this means distances grow fast in 
directions where within-class variance is small.

Pictures from Shental, Hertz, Weinshall, Pavel, “Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

mean of 
chunkletnumber of

all data



  

Method 3: Relevant Component Analysis
● Good property: very simple method. Bad property: only uses 

“must-link” constraints, does not use “cannot-link” constraints 
at all.

  Performance of various 
  metrics in nearest neighbor 
  classification of face images. 
  EigenFace essentially means 
  PCA. FisherFace essentially 
  means Linear Discriminant 
  Analysis. FisherFace performs 
  best but it is fully supervised 
  (knows class labels), RCA only 

   uses must-link constraints. 

Pictures from Shental, Hertz, Weinshall, Pavel, “Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

3 and 5 denote numbers of points in the chunklets



  

Method 4: Discriminative Component Analysis
● Steven C. Hoi, Wei Liu, Michael R. Lyu, and Wei-Ying Ma, “Learning Distance Metrics 

with Contextual Constraints for Image Retrieval”, in proceedings of CVPR 2006.
● Again, similar names have been used in other methods...
● Idea: similar to Relevant Component Analysis, but use also 

“cannot-link” information.
● For each chunklet i, identify “discriminative set” Di: other 

chunklets that have at least one cannot-link constraint to 
chunklet i.  

Some pictures from Hoi, Liu, Lyu, and Ma,  in proceedings of CVPR 2006.

chunklet 1

chunklet 2

chunklet 3

Must-link constraints shown as green lines, 
cannot-link as red dashed lines.

Discriminative set for chunklet 1: chunklets 2, 3. 
Discriminative set for chunklet 2: chunklet 1.
Discriminative set for chunklet 3: chunklet 1.



  

Method 4: Discriminative Component Analysis
● Compute matrix similar to the previous within-chunklet 

covariance, and also a matrix of between-discriminative-
chunklets covariance:

● Then optimize a transformation matrix A with a criterion similar 
to linear discriminant analysis (corresponding Mahalanobis 
matrix is M=ATA:

(The solution can be 
found by an eigenvalue
approach)

Some pictures from Hoi, Liu, Lyu, and Ma,  in proceedings of CVPR 2006.

mean of chunklet j

discriminative set of chunklet j

number of points in chunklet j

total number of chunklets in all discriminative 
sets



Method 4: Discriminative Component Analysis
● Performance in an information retrieval study using various 

metrics:

evaluation criterion: average precision on top-20 returned 
images

Some pictures from Hoi, Liu, Lyu, and Ma,  in proceedings of CVPR 2006.

another 
comparison
method

kernel version of 
discriminative 
component analysis, 
not discussed here



Method (family) 5: Multiple Kernel Learning
● Idea: suppose we have a set of known fixed kernel functions:

Then any weighted linear combination of them is also a valid 
kernel function.

● Learn the “best” linear combination of the kernel functions, 
based on annotations:

● Optimize the weights w based on cost functions like the ones 
we have seen for other methods (note that distances involved 
in the cost functions can be computed using the kernel)



Method 6: The Learning Metric
● Learns a local metric from class labels of data.
● Suppose we know conditional probabilities of classes at 

different points of the feature space. 
● Idea: Locally, distances should increase the most in directions 

where the class probabilities (class distribution) changes the 
most. If we have good local distances, we can derive a full 
metric from them.

● Difference between two class probability distributions can be 
measured by Kullback-Leibler divergence

● It turns out Kullback-Leibler divergence between conditional 
class distributions at nearby points (x, x+dx) can be expressed 
as a squared Mahalanobis distance!



Method 6: The Learning Metric
● The Mahalanobis matrix J(x) is the Fisher information matrix 

computed from the change of the local class distributions:

● Under suitable assumptions J(x) can be computed analytically
● Assume the conditional probabilities have a form, 

corresponding to a Gaussian mixture density in each class:

prior weight of kth Gaussian

weight of class c in kth Gaussian

mean of kth Gaussian



Method 6: The Learning Metric
● Then the Fisher information matrix can be computed as:

● As mentioned before, local Mahalanobis distances can be 
extended to global distances between two points as minimal 
integrals of the local distances (minimal integral over possible 
paths between the points)



Method 6: The Learning Metric
● As mentioned before, local Mahalanobis distances can be 

extended to global distances between two points as minimal 
integrals of the local distances (minimal integral over possible 
paths between the points)

● Simple approach: just compute the local Mahalanobis from x to 
x+dx, regardless how large the difference dx is.

● More advanced approach: compute an approximate integral 
over the line connecting x to x+dx (e.g.divide line into 10 
segments, compute local Mahalanobis over each segment).

● Even more advanced approach (similar to Isomap): compute 
initial distance matrix as above, then compute minimal path 
using other data points as possible waypoints. Can be done by 
Dijkstra's algorithm / Floyd's algorithm.



Method 6: The Learning Metric
● Example of local Mahalanobis metrics

2 classes,
grayscale background:
probability of class 1.

lines: direction where 
local Mahalanobis 
distance increases

distance increases only
in directions where
class probability changes!

● The learning metric can be computed between any points 
(either the known training data points or any other points). 
Thus it can be applied to any method that works based on 
distances.



Sammon's Mapping in the Learning Metric
Traditional Sammon's mapping on a data set of images of different letters 
A-Z, using various geometrical descriptors about the letter shapes as the 
features, with the Euclidean metric (“Sammon-E”). 

From:
Jaakko 
Peltonen, Arto 
Klami, and 
Samuel 
Kaski. 
Improved 
Learning of 
Riemannian 
Metrics for 
Exploratory 
Data 
Analysis. 
Neural 
Networks, vol. 
17, pages 
1087-1100, 
2004.



Sammon's Mapping in the Learning Metric
Traditional Sammon's mapping on a data set of images of different letters 
A-Z, using various geometrical descriptors about the letter shapes as the 
features, with the local supervised Learning Metric (“Sammon-L”). 

From:
Jaakko 
Peltonen, Arto 
Klami, and 
Samuel 
Kaski. 
Improved 
Learning of 
Riemannian 
Metrics for 
Exploratory 
Data 
Analysis. 
Neural 
Networks, vol. 
17, pages 
1087-1100, 
2004.



Self-Organizing Map in the Learning Metric
Idea: at each iteration of Self-Organizing Map training, find the nearest 
prototype for a data point using distances in the learning metric, instead of 
the simple Euclidean metric. The rest of the Self-Organizing Map training 
(the way propotypes are adapted towards data) is the same as before.

Learning metric Euclidean metric Self-Organizing 
Map trained for 
letter images 
(features = 
geometric 
descriptions of 
the letters), with 
classes A-Z 
shown on the 
map.

The Learning 
Metric leads to 
better class 
organization

From:
Samuel 
Kaski, Janne 
Sinkkonen, 
and Jaakko 
Peltonen. 
Bankruptcy 
analysis with 
self-
organizing 
maps in 
learning 
metrics. IEEE 
Transactions 
on Neural 
Networks, 
12:936-947, 
2001.



Self-Organizing Map in the Learning Metric
Idea: at each iteration of Self-Organizing Map training, find the nearest 
prototype for a data point using distances in the learning metric, instead of 
the simple Euclidean metric. The rest of the Self-Organizing Map training 
(the way propotypes are adapted towards data) is the same as before.

Probability of 
bankruptcy

Actual per-node 
frequency of 
bankrupt companies

Self-Organizing 
Map trained for 
company data 
(features = 
financial 
indicators) in the 
learning metric. 
Classes = 
whether the 
company went 
bankrupt.



  

Metric Learning References

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A Survey 
on Metric Learning for Feature Vectors and Structured Data. 
ArXiv:136.6709, 2013.

Liu Yang and Rong Jin. DistLearnKit: A Matlab Toolkit for 
Distance Metric Learning. 
www.cs.cmu.edu/~liuy/distlearn.htm

Tutorials on metric learning have been given at conferences 
ICML 2010, ECCV 2010, and workshops on metric learning have 
been held at conferences ICCV 2011, NIPS 2011, and ICML 
2013. Some of their material may be available online.
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