
MTTTS17

Dimensionality Reduction
and Visualization

Spring 2020, 5cr
Jaakko Peltonen

Lecture 9: Metric Learning

Motivation – metric learning

● Metric learning means learning a better metric (better distance
function) between the original high-dimensional data than the
original metric that one starts with

● “Better” can mean many things, for example better separation
between classes of data, better correspondence to some
known properties, etc.

● Metric learning is not dimensionality reduction by itself.
However, it has clear connections to dimensionality reduction,
and can be used as part of dimensionality reduction.

Motivation – metric learning

● Many statistical methods rely on distances as much or more
than they do on feature values:
● nearest neighbor regression/classification uses distances to

find the nearest neighbors
● many clustering approaches such as k-means use

distances as part of the algorithm to optimize the clustering
● in information retrieval, “best” results are often the ones

most similar to the query according to some distance
● Learning a good distance function between features can thus

be as important as learning which features to use.
● Handcrafting good metrics is hard, automatic learning from

data is needed
● Computer vision, information retrieval, and bioinformatics (e.g.

learning dissimilarities between DNA sequences) are
prominent application areas of metric learning

Types of metrics

● Metrics can be simple or complicated functions of data
features.

● The Euclidean metric is a simple squared sum of coordinate
differences.

● Norm-independent distance is related to cosine similarity:

Types of metrics

● A Mahalanobis metric is described by a positive semidefinite
metric matrix A:

● If A is diagonal the metric is just feature weighting:

● The traditional Mahalanobis metric uses A=C-1 where C is the
covariance matrix of the data. This metric appears inside the
exponential term of a multidimensional Gaussian density function:

● We call the metric with any A a Mahalanobis metric.

Types of metrics

● Adjusting a Mahalanobis metric can make it easier to, for example,
distinguish between classes of data: assume d(x,w) = (x-w)T A (x-w)

● A non-diagonal Mahalanobis metric can take into account not
just feature importances, but importance of feature combinations

Pictures from slides by Kerstin Bunte

Types of metrics

A

● Adjusting a Mahalanobis metric can make it easier to, for example,
distinguish between classes of data: assume d(x,w) = (x-w)T A (x-w)

● A non-diagonal Mahalanobis metric can take into account not
just feature importances, but importance of feature combinations

Pictures from slides by Kerstin Bunte

Types of metrics

● Adjusting a Mahalanobis metric can make it easier to, for example,
distinguish between classes of data: assume d(x,w) = (x-w)T A (x-w)

● A non-diagonal Mahalanobis metric can take into account not
just feature importances, but importance of feature combinations

A A

Pictures from slides by Kerstin Bunte

Types of metrics

● Nonlinear metrics can be described in several ways:

Globally through an explicit transformation: For example
any nonlinear transformation y = f(x), followed by an Euclidean
or Mahalanobis metric between the transformed features.
● Thus learning any transformation f for the data (followed by

a traditional metric) can be seen as learning a metric for the
data:

● The output of the transformation can be higher-dimensional
or lower-dimensional than the original features

● In particular, learning any dimensionality reduction (feature
selection/feature extraction) can be seen as learning a
metric where the left-out features have no effect on
distance.

Types of metrics

● Nonlinear metrics can be described in several ways:

Globally through an implicit transformation: Sometimes the
transformation does not need to be known, as long as the
metric between the transformed features is known.
● Kernel methods like kernel PCA use kernel functions to

compute inner products in a transformed space.
● Valid kernel functions (so-called “Mercer kernels”) always

correspond to inner products in some transformed space,
even if the transformation is unknown/hard to compute.

● Distances can be computed using kernels only: assume f is
the unknown nonlinear function and is the
known kernel function. Then the distance can be computed
as

Types of metrics

● Nonlinear metrics can be described in several ways:

Alternatively, a metric can be described locally:
● In each very small (infinitesimally small) neighborhood N(x)

of the feature space around point x, distances inside the
neighborhood are described by a Mahalanobis metric with a
metric matrix A(x).

● Distances between two far-apart points x1, x2 are given by
integrals of local distances: for any path from x1 to x2, the
distance along the path is the integral over local distances
along the path.

The shortest path (minimal integral) defines the distance
d(x1, x2).

Shortest path may be difficult to compute analytically, but
can be approximated.

Properties of a metric

● In general, any function between pairs of
data points can be used as a distance function, as long as it
satisfies the properties of a metric:
● non-negativity (separation axiom):
● coincidence axiom:
● symmetry:
● triangle inequality:

● The previous examples (Euclidean, cosine, Mahalanobis,
transformation + Euclidean/Mahalanobis, kernel-based, local
Mahalanobis) all satisfy non-negativity, symmetry, and triangle
inequality.
● However, they can cause several x,y to have zero distance

from each other (e.g. Mahalanobis with some zeros on the diagonal)

● The satisfy the coincidence axiom if we consider all points
at distance zero from each other to be “the same point”

How to Learn a Metric

● Metric learning can be done either in a supervised way or an
unsupervised way.

● Unsupervised metric learning would mean optimizing a metric
(e.g. optimizing the Mahalanobis matrix, or optimizing a data
transformation) to make the data “look interesting” in the new
metric: for example, to make the data appear well clustered.

● Roughly speaking: try several metrics, compute for
each metric an “interestingness score” such as a
clustering criterion, choose the metric that gives the
best score.

● We focus mostly on supervised metric learning, where there is
some annotation available for some of the data points.

● Intuitively, the annotation tells which pairs of points should
have small distance and which ones should have large
distance.

How to Learn a Metric
● Different kinds of annotations:

Class labels: some subset of training data points has a known
class label, out of a set of NC different classes. For example
data points might be pictures of people, for some pictures the
identity of the person is known.

Must-link / cannot-link constraints: for some pairs of training
data points, it is known that they should be similar or dissimilar.

For example video footage might contain several pictures of
the same person, and the pictures can be considered “similar”
even if the person's identity is unknown.
Or: in social data sets data points might be people, and some
people are known to be “similar” (friends/colleagues, etc.)

● Some methods instead use constraint triplets as annotation:

How to Learn a Metric
● Class label annotation can be turned to pairwise constraints

(“same-class points are similar, different-class points are
dissimilar”), but class labels can provide more information.
Constraint-based methods can be called “weakly supervised”

● Semi-supervised methods use also the unlabeled data

● Some approaches learn just a distance matrix (or kernel matrix) for
a finite data set, but the ones we discuss learn an actual distance
function that generalizes to new data points.

● For example, metrics may be learned from a data subset
that has annotations, and then applied to all data

Illustration of metric learning
 from pairwise constraints

Pictures from A. Bellet, A. Habrard, and M. Sebban, ArXiv:136.6709, 2013.

How to Learn a Metric
● Differences between methods are: what kind of annotations are

used, what form of metric is learned, and what cost function is
used to evaluate how well the metric fits the annotations

● Other differences include optimization details (optimality,
scalability), and whether the metric learning method can
inherently perform dimensionality reduction

Pictures from A. Bellet, A. Habrard, and M. Sebban, ArXiv:136.6709, 2013.

Using the New Metrics for Dimensionality
Reduction or Visualization

● If we have a dimensionality reduction/visualization method that
works based on distances (or based on a distance function),
we can often simply give the optimized distances as input.

● For example the “Sammon's Mapping in the Learning Metric”
method (Sammon-L; Jaakko Peltonen, Arto Klami, and Samuel
Kaski, “Improved Learning of Riemannian Metrics for
Exploratory Data Analysis”) infers the supervised Learning
Metric, computes pairwise distances in it, and gives them as
input to a traditional Sammon's mapping algorithm.

● One could similarly give supervised distances like the Learning
Metric as input to Multidimensional scaling, or Curvilinear
Component Analysis.

Dimensionality Reduction by Learning a Metric?

● We already saw that learning a dimensionality reduction
corresponds to learning a metric where left-out features don't
affect distances.

● It is possible to do the reverse: by learning a metric, we can tell
which features are important to keep, and which can be left
out.

● For example: if, in a diagonal Mahalanobis metric matrix A,
some features have very small weights (close to zero), they
don't affect distances much and could be left out.

Dimensionality Reduction by Learning a Metric?

● In general: if the Mahalanobis metric matrix A has an
eigendecomposition A = VDVT, where D is diagonal, then

where D1/2 is D with square roots taken from diagonal entries.

● Thus learning Mahalanobis metric corresponds to learning a
linear data transformation!

● If some eigenvalues (diagonals of D) are zero, then the metric
effectively performs dimensionality reduction

● Some methods learn a metric with penalties that encourage
features to be left out.

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

Method first proposed in Samuel Kaski and Jaakko Peltonen, ”Informative
discriminant analysis”, in proceedings of ICML 2003. Soon after proposed in
Jacob Goldberger, Sam Roweis, Geoffrey Hinton, Ruslan Salakhutdinov,
“Neighbourhood components analysis”, proceedings of NIPS 2004.

Idea: assume training data have labels. Learn a Mahalanobis
metric matrix A. Maximize log-likelihood of predicting labels of a
point from its nearby neighbors in the metric. (This method is thus
a maximum-likelihood method to estimate the metric.)

Suppose the density of each class can be written as a mixture of
multivariate Gaussian distributions with class-dependent weights:

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

If conditional class-prob.
is

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

If conditional class-prob.
is

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

If conditional class-prob.
is

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

If conditional class-prob.
is

And the log-likelihood of observed class-labels ci of points xi is

 which can be maximized with respect to A

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

The locations and class-weights of the Gaussians can come from
a previous density estimation. Alternatively, a simple way is to set
one Gaussian at every training data point, and set its class
weights according to the class of the data point:

Then, to compute leave out the i:th term from the sums
(leave-one-out procedure)

The log-likelihood can be maximized with respect to A by gradient
methods.

And the log-likelihood of observed class-labels ci of points xi is

 which can be maximized with respect toA

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

Performance of IDA/NCA can be measured for example by K-
nearest neighbor classification accuracy on a test set not used for
learning the metric.

IDA/NCA can give better results than LDA, because it does not
make simple single-Gaussian assumptions about classes, and
because it directly maximizes conditional class log-likelihood.

IDA/NCA compared to
other metrics on six data
sets. It clearly outperforms

 the Euclidean metric and is
 among the best metrics.

Pictures from J. Goldberger, S. Roweis, G. Hinton, R.
Salakhutdinov, proc. NIPS 2004.

Method 1: Informative Discriminant Analysis /
Neighborhod Component Analysis

IDA/NCA can also be used for dimensionality reduction by restricting the
rank of the metric matrix A, or by directly optimizing A as a product of a
linear projection matrix W, A=WWT. The probabilities and cost function
are computed the same as before. The matrix W can be used to project
data to lower dimensionality.

Pictures
from J.

Goldber
ger, S.

Roweis,
G.

Hinton,
R.

Salakhu
tdinov,

proc.
NIPS
2004.

Method 2: Learning from Pairwise Comparisons
● A metric tells which points are similar (they have small distance

in the metric) and which points are dissimilar (they have large
distance). The desired metric is unknown - we want to learn it.

● If we have examples of similar point pairs and examples of
dissimilar point pairs, can we learn a metric from them?

● Yes! Use probabilistic modeling: given a metric, define a
probability that two points in the metric will be labeled
similar vs. dissimilar. Then optimize the metric to maximize the
likelihood of the observed pairs!

● For example, use a Mahalanobis metric (matrix A = WWT) and
a logistic probability:

● Then maximize the log-likelihood of observed similarities with
respect to elements of W, e.g. by gradient descent:

Some pictures from Hoi, Liu, Lyu, and Ma, in proceedings of CVPR 2006.

psimilar(x i , x j)=
1

1+exp((xi−x j)
T A (x i−x j)−threshold)

maxW [∑(xi , x j)∈Ssimilar
log psimilar(xi , x j)+∑(xi , x j)∈S dissimilar

log(1−psimilar (xi ,x j))]

“points closer
than threshold
are probably
called similar”

Method 2: Learning from Pairwise Comparisons
● This idea was used for interactive visualization (Peltonen et al.)
● Experts inspected a scatterplot of scientific documents and

pointed out pairs of documents that were similar or dissimilar.
● A metric was learned for document features (=unigram

content)
● The metric was learned based on the pointed-out pairs, and a

new visualization was constructed in the new metric.
● The experts inspected again,

and pointed out more pairs.
● The metric and visualization

converged to focus on
important features of data.

● The metric was learned by
a so-called variational
Bayes algorithm (outside
the scope of the course)
rather than maximizing
likelihood, but the idea
is essentially the same.Pictures from Peltonen et al., Information Retrieval

Perspective to Interactive Data Visualization, in Eurovis 2013.

Method 3: Relevant Component Analysis
● Proposed in Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna

Weinshall, “Learning Distance Functions using Equivalence Relations”, in
proceedings of ICML 2003, and in Shental, Hertz, Weinshall, Pavel,
“Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

● Idea: data often comes in “chunklets” known to arise from the
same unknown class. For example several images from a
video sequence of a person: all images have the same person.

● Given a set of pairwise “must-link” constraints (“x1 and x2 have
the same unknown class”), identify the chunklets by transitive
closure of the constraints:

chunklet 1

chunklet 2

chunklet 3

Must-link constraints shown as green lines

+
+

+
+

-

-

-

--
+

chunklet 1

chunklet 2

chunklet 3

Example of underlying classes of the chunklets

Method 3: Relevant Component Analysis
● Given N chunklets (data subsets) Hn, each of size Hn , compute

the average within-chunklet covariance:

● Use the inverse of the within-chunklet covariance as a
Mahalanobis distance matrix! (Alternatively: compute a
corresponding data transformation, we saw earlier that
Mahalanobis metrics correspond to linear data
transformations)

● This means that distances grow slowly in directions where
within-chunklet variance is large, and fast in directions where
within-chunklet variance is small. If chunklets are shaped like
the classes they come from, this means distances grow fast in
directions where within-class variance is small.

Pictures from Shental, Hertz, Weinshall, Pavel, “Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

mean of
chunkletnumber of

all data

Method 3: Relevant Component Analysis
● Good property: very simple method. Bad property: only uses

“must-link” constraints, does not use “cannot-link” constraints
at all.

 Performance of various
 metrics in nearest neighbor
 classification of face images.
 EigenFace essentially means
 PCA. FisherFace essentially
 means Linear Discriminant
 Analysis. FisherFace performs
 best but it is fully supervised
 (knows class labels), RCA only

 uses must-link constraints.

Pictures from Shental, Hertz, Weinshall, Pavel, “Adjustment Learning and Relevant Component Analysis”, in ECCV 2002.

3 and 5 denote numbers of points in the chunklets

Method 4: Discriminative Component Analysis
● Steven C. Hoi, Wei Liu, Michael R. Lyu, and Wei-Ying Ma, “Learning Distance Metrics

with Contextual Constraints for Image Retrieval”, in proceedings of CVPR 2006.
● Again, similar names have been used in other methods...
● Idea: similar to Relevant Component Analysis, but use also

“cannot-link” information.
● For each chunklet i, identify “discriminative set” Di: other

chunklets that have at least one cannot-link constraint to
chunklet i.

Some pictures from Hoi, Liu, Lyu, and Ma, in proceedings of CVPR 2006.

chunklet 1

chunklet 2

chunklet 3

Must-link constraints shown as green lines,
cannot-link as red dashed lines.

Discriminative set for chunklet 1: chunklets 2, 3.
Discriminative set for chunklet 2: chunklet 1.
Discriminative set for chunklet 3: chunklet 1.

Method 4: Discriminative Component Analysis
● Compute matrix similar to the previous within-chunklet

covariance, and also a matrix of between-discriminative-
chunklets covariance:

● Then optimize a transformation matrix A with a criterion similar
to linear discriminant analysis (corresponding Mahalanobis
matrix is M=ATA:

(The solution can be
found by an eigenvalue
approach)

Some pictures from Hoi, Liu, Lyu, and Ma, in proceedings of CVPR 2006.

mean of chunklet j

discriminative set of chunklet j

number of points in chunklet j

total number of chunklets in all discriminative
sets

Method 4: Discriminative Component Analysis
● Performance in an information retrieval study using various

metrics:

evaluation criterion: average precision on top-20 returned
images

Some pictures from Hoi, Liu, Lyu, and Ma, in proceedings of CVPR 2006.

another
comparison
method

kernel version of
discriminative
component analysis,
not discussed here

Method (family) 5: Multiple Kernel Learning
● Idea: suppose we have a set of known fixed kernel functions:

Then any weighted linear combination of them is also a valid
kernel function.

● Learn the “best” linear combination of the kernel functions,
based on annotations:

● Optimize the weights w based on cost functions like the ones
we have seen for other methods (note that distances involved
in the cost functions can be computed using the kernel)

Method 6: The Learning Metric
● Learns a local metric from class labels of data.
● Suppose we know conditional probabilities of classes at

different points of the feature space.
● Idea: Locally, distances should increase the most in directions

where the class probabilities (class distribution) changes the
most. If we have good local distances, we can derive a full
metric from them.

● Difference between two class probability distributions can be
measured by Kullback-Leibler divergence

● It turns out Kullback-Leibler divergence between conditional
class distributions at nearby points (x, x+dx) can be expressed
as a squared Mahalanobis distance!

Method 6: The Learning Metric
● The Mahalanobis matrix J(x) is the Fisher information matrix

computed from the change of the local class distributions:

● Under suitable assumptions J(x) can be computed analytically
● Assume the conditional probabilities have a form,

corresponding to a Gaussian mixture density in each class:

prior weight of kth Gaussian

weight of class c in kth Gaussian

mean of kth Gaussian

Method 6: The Learning Metric
● Then the Fisher information matrix can be computed as:

● As mentioned before, local Mahalanobis distances can be
extended to global distances between two points as minimal
integrals of the local distances (minimal integral over possible
paths between the points)

Method 6: The Learning Metric
● As mentioned before, local Mahalanobis distances can be

extended to global distances between two points as minimal
integrals of the local distances (minimal integral over possible
paths between the points)

● Simple approach: just compute the local Mahalanobis from x to
x+dx, regardless how large the difference dx is.

● More advanced approach: compute an approximate integral
over the line connecting x to x+dx (e.g.divide line into 10
segments, compute local Mahalanobis over each segment).

● Even more advanced approach (similar to Isomap): compute
initial distance matrix as above, then compute minimal path
using other data points as possible waypoints. Can be done by
Dijkstra's algorithm / Floyd's algorithm.

Method 6: The Learning Metric
● Example of local Mahalanobis metrics

2 classes,
grayscale background:
probability of class 1.

lines: direction where
local Mahalanobis
distance increases

distance increases only
in directions where
class probability changes!

● The learning metric can be computed between any points
(either the known training data points or any other points).
Thus it can be applied to any method that works based on
distances.

Sammon's Mapping in the Learning Metric
Traditional Sammon's mapping on a data set of images of different letters
A-Z, using various geometrical descriptors about the letter shapes as the
features, with the Euclidean metric (“Sammon-E”).

From:
Jaakko
Peltonen, Arto
Klami, and
Samuel
Kaski.
Improved
Learning of
Riemannian
Metrics for
Exploratory
Data
Analysis.
Neural
Networks, vol.
17, pages
1087-1100,
2004.

Sammon's Mapping in the Learning Metric
Traditional Sammon's mapping on a data set of images of different letters
A-Z, using various geometrical descriptors about the letter shapes as the
features, with the local supervised Learning Metric (“Sammon-L”).

From:
Jaakko
Peltonen, Arto
Klami, and
Samuel
Kaski.
Improved
Learning of
Riemannian
Metrics for
Exploratory
Data
Analysis.
Neural
Networks, vol.
17, pages
1087-1100,
2004.

Self-Organizing Map in the Learning Metric
Idea: at each iteration of Self-Organizing Map training, find the nearest
prototype for a data point using distances in the learning metric, instead of
the simple Euclidean metric. The rest of the Self-Organizing Map training
(the way propotypes are adapted towards data) is the same as before.

Learning metric Euclidean metric Self-Organizing
Map trained for
letter images
(features =
geometric
descriptions of
the letters), with
classes A-Z
shown on the
map.

The Learning
Metric leads to
better class
organization

From:
Samuel
Kaski, Janne
Sinkkonen,
and Jaakko
Peltonen.
Bankruptcy
analysis with
self-
organizing
maps in
learning
metrics. IEEE
Transactions
on Neural
Networks,
12:936-947,
2001.

Self-Organizing Map in the Learning Metric
Idea: at each iteration of Self-Organizing Map training, find the nearest
prototype for a data point using distances in the learning metric, instead of
the simple Euclidean metric. The rest of the Self-Organizing Map training
(the way propotypes are adapted towards data) is the same as before.

Probability of
bankruptcy

Actual per-node
frequency of
bankrupt companies

Self-Organizing
Map trained for
company data
(features =
financial
indicators) in the
learning metric.
Classes =
whether the
company went
bankrupt.

Metric Learning References

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A Survey
on Metric Learning for Feature Vectors and Structured Data.
ArXiv:136.6709, 2013.

Liu Yang and Rong Jin. DistLearnKit: A Matlab Toolkit for
Distance Metric Learning.
www.cs.cmu.edu/~liuy/distlearn.htm

Tutorials on metric learning have been given at conferences
ICML 2010, ECCV 2010, and workshops on metric learning have
been held at conferences ICCV 2011, NIPS 2011, and ICML
2013. Some of their material may be available online.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

