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Brief Recap



Faithfully?

• Good Precision: Points that are close in the “reduced” 
space are close in the original space 

• Good Recall: Points that are close in the original space 
are close in the “reduced” space

• In general, impossible to get both



Vector Quantization
• minimizes the distortion

• with N the number of points (samples), V the number of 
centroids (units), x the samples, v the centroids

E =
1

NV

NX

i=1

kxi � v(xi)k2
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SOM
• Random initialization or PCA initialization

• Iterations 
 

• Example:
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Laplacian eigenmap
>> L

L =

    -1     1     0     0     0     0
     1    -2     1     0     0     0
     0     1    -2     1     0     0
     0     0     1    -2     1     0
     0     0     0     1    -2     1
     0     0     0     0     1    -1

>> [V,D]=eig(L)

V =

    0.1494    0.2887    0.4082   -0.5000    0.5577    0.4082
   -0.4082   -0.5774   -0.4082    0.0000    0.4082    0.4082
    0.5577    0.2887   -0.4082    0.5000    0.1494    0.4082
   -0.5577    0.2887    0.4082    0.5000   -0.1494    0.4082
    0.4082   -0.5774    0.4082    0.0000   -0.4082    0.4082
   -0.1494    0.2887   -0.4082   -0.5000   -0.5577    0.4082

D =

   -3.7321         0         0         0         0         0
         0   -3.0000         0         0         0         0
         0         0   -2.0000         0         0         0
         0         0         0   -1.0000         0         0
         0         0         0         0   -0.2679         0
         0         0         0         0         0   -0.0000
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Manifolds



Curvilinear component analysis (CCA)

• Demartines, Hérault, 1997.

• Curvilinear component analysis (CCA) is like (absolute) 
MDS, except that only short distances are taken into 
account.

• More formally, the cost function reads

where F(d,λy) equals unity, if d<λy, and zero otherwise; 
and d denotes the Euclidean distance of points in the 
original space (x) and in the projection (y), respectively. 
(Actually, F(d,λy), could be any monotonically decreasing 
function in d.)
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�r =
�

i<j

(d(xi, xj)� d(yi, yj))
2 F (d(yi, yj),�y)

Manifolds



Mathematical Framework



Assume we have 
! a finite set of data points 
! corresponding projections 
! a sequence of tuples of data points and their projections 
 

! denote the set of all finite subsequences of a given set A by S(A)  
(for example                ) 

! length of a given sequence  
 
For all methods the coefficients      are determined based on the 
same general principle using the same basic ingredients 
 
 

A General View of Dimensionality Reduction



General Principle of Dimensionality Reduction

Determine projections    by minimizing an error measure between 
the characteristics derived from the original training set X and 
corresponding characteristics of its projections: 

! function                                              maps data sequence X 
and point x in       to some characteristics of the point x that we 
want to preserve. Usually                               .  
 
For example in MDS, the characteristics of a point x are the 
vector of squared distances from x to all other points in X. 

! function                                                                   maps a subset               
        of points and their projections and a given tuple of a point 
and its projection. Usually   
 
In MDS, the characteristics of a projected point    are the vector 
of squared distances from     to all other projected points. (In this 
case the characteristics are computed from projected data only.) 



General Principle of Dimensionality Reduction

! error measure                               (difference of characteristics)  
 
In MDS the error for the i:th data point is the sum of squared 
differences between the low-dimensional and high-dimensional 
characteristics (low-dimensional and high-dimensional squared 
distances).  

! DR: given finite sequence                    determine the projections      
for every xi such that the costs are minimal: 
 
 

! possible constraints:                                 imposed on     to guarantee 
uniqueness (optimized simultaneously with the costs)



General Framework

 
 
 
 

! implicit mapping:                                        optimize the 
representatives     directly 

! explicit mapping function                                                   
optimize parameters W of the mapping function, direct out-of-
sample extension for a new sample 

! Additional information can be part of the framework: 
! label information yi for samples xi (supervised methods) 
! optimization constraints 



General Principle of Dimensionality Reduction

Methods might differ 
! in the definition of the characteristics 
! in the way the error is measured 
! in implicit or explicit computation of the characteristics 
! in the optimization (analytical or numerical) 
! in the way possible constraints are included 

(objective and constraints might be contradictory)



More methods:  
Isomap,  

Locally Linear Embedding,  
Maximum Variance Unfolding



Isomap

Multidimensional scaling methods tried to preserve all squared 
distances —> preservation of largest distances had biggest effect 
on the cost 
 
Methods like Sammon’s mapping and Curvilinear Component 
Analysis tried to focus more on accurate preservation of small 
distances in the original space (Sammon) or accurateness of small 
on-screen distances (Curvilinear Component Analysis). 

These methods essentially partly sacrifice preservation of large 
distances in favour of preserving small ones. 
What if we want to try to also preserve large distances? 



Isomap

If the data lies along a manifold embedded in a high-dimensional 
space, long Euclidean distances might not follow the manifold. 
Therefore directly preserving long Euclidean distances would not 
“unfold” the manifold. 
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2.5 Euclidean distance between  
two points corresponds to  
the length of the line  
connecting the points.  The  
line usually does not follow  
the manifold of the data.



Isomap

Euclidean distance in the original space might not be appropriate 
---> replace by geodesic distance (Joshua B. Tenenbaum, Vin de 
Silva, and John C. Langford, “A Global Geometric Framework for 
Nonlinear Dimensionality Reduction”, Science, 2000) 

Approximate geodesic distance as shortest distance along a 
neighbourhood graph of the data. 



Isomap

Construct neighborhood graph (k neighborhood or   -balls) and 
compute shortest path length along the graph between all pairs of 
points:  
• first compute distance to the neighbors of each point, and 

write this as a distance matrix (set distance to non-neighbors 
to infinity).  

• Then use Dijkstra’s algorithm to find shortest distance along 
the graph from a point to all other points.  

This defines pairwise affinities (distances), and therefore defines 
the characteristics                      of the data to be preserved.  
  



Isomap
Afterwards follow standard MDS procedure: find low-dimensional 
coordinates whose Euclidean squared distances best approximate the 
above-defined squared shortest-path distances.  
  
Standard MDS code can be used, the difference is only in how the 
original distances are computed. 
 
(In brief: center the distance matrix - subtract mean of rows from each 
row, subtract mean of columns from each column, subtract mean of 
elements from each element. Compute eigenvectors of the centered 
matrix, eigenvectors corresponding to largest eigenvalues give the 
reduced coordinates.) 



Isomap

Swiss roll example: Euclidean distance can “jump” across the 
manifold, while the “ideal” distance goes along the manifold.



Isomap

Neighborhood graph (with N=1000 data points and K=7 neighbors connected 
to each point), geodesic approximated by shortest path along the graph.



Isomap

Two-dimensional embedding computed by MDS, to preserve the resulting 
approximate squared geodesic distances, as squared Euclidean distances on 
the display.  
 
Note: geodesics are approximated directly by the Euclidean (straight-line) low-
dim. distances, not by shortest paths along the graph.



Isomap
Downsides of Isomap: 
distances along the 
graph are only 
approximations of the 
true geodesic 
distances. They 
overestimate the 
distances, especially 
large distances, when 
data is sparse (less 
“waypoints” to choose 
from—>suboptimal 
path). 

From: John Aldo Lee, Amaury Lendasse , Michel Verleysen. Nonlinear projection with curvilinear distances: Isomap versus 
curvilinear distance analysis. Neurocomputing 57 (2004) 49 – 76.

Overestimation of distances causes overstretching of faraway edges



Isomap
Downsides of Isomap: poorly 
constructed neighbourhood graphs 
can distort the approximation of 
geodesic distances (especially 
longer distances), and distort the 
resulting embedding.

From: John Aldo Lee, Amaury Lendasse , Michel Verleysen. Nonlinear projection with curvilinear distances: Isomap versus 
curvilinear distance analysis. Neurocomputing 57 (2004) 49 – 76.



Curvilinear distance analysis (CDA)
J.A. Lee, A. Lendasse, N. Donckers, M. Verleysen, “A robust nonlinear projection method”, in: M.
Verleysen (Ed.), Proceedings of ESANN’2000, Eighth European Symposium on ArtiHcial Neural
Networks, D-Facto Publications, Bruges, Belgium, 2000, pp. 13–20.

• Curvilinear component analysis (CCA) is like (absolute) 
MDS, but only short distances are taken into account.

• More formally, the cost function reads

where F(d,λy) equals unity, if d<λy, and zero otherwise; 
and d denotes the Euclidean distance of points in the 
original space (x) and in the projection (y), respectively. 
(Actually, F(d,λy), could be any monotonically decreasing 
function in d.)

• Curvilinear distance analysis (CDA) is the same, except 
the d(xi,xj) are computed as distances along a 
neighbourhood graph, just like in Isomap!

�r =
�

i<j

(d(xi, xj)� d(yi, yj))
2 F (d(yi, yj),�y)

Manifolds



Curvilinear Distance Analysis

In CDA poorly approximated longer 
distances don’t distort as much as 
in Isomap, since the embedding 
concentrated on small distances.

From: John Aldo Lee, Amaury Lendasse , Michel Verleysen. Nonlinear projection with curvilinear distances: Isomap versus 
curvilinear distance analysis. Neurocomputing 57 (2004) 49 – 76.



Curvilinear distance analysis (CDA)

Some implementations of Isomap use a 
random sampling of a subset of points, to 
speed up computation. This can greatly 
distort distances (top).

If one must use a subset, it is better to 
create the subset by vector quantisation 
methods, as is done in Curvilinear 
Distance Analysis (bottom).

Manifolds

From: John Aldo Lee, Amaury Lendasse , 
Michel Verleysen. Nonlinear projection with 
curvilinear distances: Isomap versus 
curvilinear distance analysis. Neurocomputing 
57 (2004) 49 – 76.



Curvilinear distance analysis (CDA)

Same data set, but now Isomap uses 
vector quantisation to create the subset 
(top). Now the quality is closer to that of 
Curvilinear Distance Analysis (bottom).

Manifolds

From: John Aldo Lee, Amaury Lendasse , 
Michel Verleysen. Nonlinear projection with 
curvilinear distances: Isomap versus 
curvilinear distance analysis. Neurocomputing 
57 (2004) 49 – 76.



Curvilinear distance analysis (CDA)

In principle approximated geodesic distances could similarly be 
used as inputs in any method that is based on distances (for 
example in Sammon’s mapping).

Manifolds



Autoencoders

Instead of preserving distances etc., why not try to directly 
reconstruct positions of original data points? 

Recall that PCA could be seen as a linear dimensionality reduction 
method that minimised a squared-distance reconstruction error 
from reconstructed positions of data to the original positions. Can 
we do something similar with nonlinear projections? 

Autoencoders (autoencoder networks) are a simple nonlinear 
extension of the concept: try to find the best low-dimensional 
nonlinear mapping, such that the original data point coordinates 
can be reconstructed as well as possible from the low-dimensional 
coordinates by another mapping. 
 



Autoencoders

Highdim—>lowdim mapping, parameters W

Lowdim—>highdim mapping, parameters V

Characteristics of an original point are simply its coordinates

Characteristics of a low-dimensional point are the high-dimensional 
coordinates reconstructed from it

Error = reconstruction error. Minimize over data points with respect to V and W.



Autoencoders
Autoencoders could be created using any parametric highdim—>lowdim 
mapping f and parametric lowdim—>highdim mapping g. 
  
Both mappings can be realised as one multilayer neural network. 
Each neuron (circle) computes a weighted sum of its inputs, followed by a 
nonlinear transformation of the sum (e.g. a logistic sigmoid). 
  
 

Parameters of the mappings = weights of the weighted sums. Can be 
learned by gradient descent to minimise the reconstruction error.
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Locally Linear Embedding

LLE (Sam Roweis & Lawrence Saul, “Nonlinear Dimensionality 
Reduction by Locally Linear Embedding”, Science, 2000): a method 
that does not aim at coordinate reconstruction, but uses coordinate 
reconstruction as part of the method. 

Idea: if the manifold of the data is locally linear, then each data point 
lies on the linear subspace spanned by its neighbors (or at least close 
to the subspace). 

If that is true, then the position of each point can be reconstructed as a 
linear combination of the positions of its neighbors. 

Try to preserve the same linear combination in the lower-dimensional 
space!  



Locally Linear Embedding

LLE (Roweis&Saul 2000): preservation of local topologies by 
reconstruction of data points by linear combination of its neighbors



Locally Linear Embedding

LLE (Roweis&Saul 2000): preservation of local topologies by 
reconstruction of data points by linear combination of its neighbors 

Let           be the neighbors of x, find reconstruction weights by 
 
 

the constraint ensures rotation and translation invariance 

Preserve local linear relationships by minimizing mean squared error:  

The weights are the same fixed weights used in the original space. 
 
Use constraint of centered coordinates                 and unit covariance                
              , to avoid trivial optimum where all coordinates are zero.  
Normalization leads to a unique optimum found by solving a 
generalized eigenvalue problem.



Locally Linear Embedding

LLE (Roweis&Saul 2000): preservation of local topologies by 
reconstruction of data points by linear combination of its neighbors 



Maximum Variance Unfolding (MVU)

Saul, L. K.; Weinberger, K. Q.; Ham, J. H.; Sha, F.; and Lee, D. D. 2006. Spectral methods for dimensionality 
reduction. In Semisupervised Learning. MIT Press. 
Sun, J.; Boyd, S.; Xiao, L.; and Diaconis, P. 2006. The fastest mixing Markov process on a graph and a 
connection to a maximum variance unfolding problem. To appear in SIAM Review. 
Kilian Q. Weinberger and Lawrence K. Saul. An Introduction to Nonlinear Dimensionality Reduction 
by Maximum Variance Unfolding. In proceedings of AAAI 2006. 
  
MVU is also based on a neighborhood graph. Projections are 
determined by maximizing the variance in the projection                  , 
while preserving the distances of neighboring points 



Maximum Variance Unfolding (MVU)

Saul, L. K.; Weinberger, K. Q.; Ham, J. H.; Sha, F.; and Lee, D. D. 2006. Spectral methods for dimensionality 
reduction. In Semisupervised Learning. MIT Press. 
Sun, J.; Boyd, S.; Xiao, L.; and Diaconis, P. 2006. The fastest mixing Markov process on a graph and a 
connection to a maximum variance unfolding problem. To appear in SIAM Review. 
Kilian Q. Weinberger and Lawrence K. Saul. An Introduction to Nonlinear Dimensionality Reduction 
by Maximum Variance Unfolding. In proceedings of AAAI 2006. 
  
MVU is also based on a neighborhood graph. Projections are 
determined by maximizing the variance in the projection                  , 
while preserving the distances of neighboring points 

From: Kilian Q. Weinberger and Lawrence K. Saul. An Introduction to Nonlinear Dimensionality Reduction
by Maximum Variance Unfolding. In proceedings of AAAI 2006. 



Maximum Variance Unfolding

MVU (Weinberger&Saul 2006) is also based on a neighborhood graph. 
Projections are determined by maximizing the variance in the 
projection                  , while preserving the distances of neighboring 
points 
 
 
 

with the constraint                                                             and centered        
    optimization can be written based on the Gram matrix 

And the solution can be found by a semidefinite program (SDP) 
                    subject to           , the projections are given by 
eigenvalue decomposition similar to MDS 



Maximum Variance Unfolding

And the solution can be found by a semidefinite program (SDP) 
                    subject to           , the projections are given by 
eigenvalue decomposition similar to MDS 

From: Kilian Q. Weinberger and Lawrence K. Saul. An Introduction to Nonlinear Dimensionality Reduction
by Maximum Variance Unfolding. In proceedings of AAAI 2006. 



Maximum Variance Unfolding

MVU on a data set of facial poses and expressions of one person 

From: Kilian Q. Weinberger 
and Lawrence K. Saul. An 
Introduction to Nonlinear 
Dimensionality Reduction
by Maximum Variance 
Unfolding. In 
proceedings of AAAI 
2006. 


