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Part 1: Neighbor embedding



  

Distance Preservation

Most dimensionality reduction methods discussed so far have 
been based on preservation of distances.

Metric MDS stress function

Other variants have modified which distances are most 
important to preserve: for example Sammon's mapping 
considers small distances the most important to preserve. But 
the aim is still to preserve distances.

Are distances the important thing to the analyst, if the aim is 
information visualization?



  

Alternative Idea: Preserve Neighborhoods

Neighbors are an important concept in many applications: 
neighboring cities, friends on social networks, followers of blogs, 
links between webpages.---> Preserve neighbors instead of 
distances?
 

In vectorial data, if nothing else is known, it is reasonable that 
close-by points in some metric can be considered neighbors.

Hard neighborhood -
each point is a neighbor
or a non-neighbor
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neighboring cities, friends on social networks, followers of blogs, 
links between webpages.---> Preserve neighbors instead of 
distances?
 

In vectorial data, if nothing else is known, it is reasonable that 
close-by points in some metric can be considered neighbors.

Soft neighborhood -
each point is a neighbor
with some weight and a 
non-neighbor with some 
weight



  

Neighborhoods in the Self-Organizing Map

The Self-Organizing Map was discussed on an earlier lecture. 
It adapts a grid of prototype vectors, moving them closer to a set 
of data points. Soft neighborhoods between prototypes on the 
grid are used to adapt the grid in an organized fashion.



  

Neighborhoods in the Self-Organizing Map

After random or PCA initialization of prototypes u, iterate: 
- Pick a data point x from the training set
- Find the nearest prototype v
- Update all prototypes u towards x, based on neighborhood of v

Images 
from 
T-61.5010 
course 
slides



  

Neighborhoods in the Self-Organizing Map

The SOM uses neighborhoods on the grid (on the output 
display), but does not use neighborhoods on the input space. 

We will next discuss methods that involve both input and 
output neighborhoods.

Images from T-61.5010 course slides



  

Alternative Idea: Preserve Neighborhoods

Neighbors are an important concept in many applications: 
neighboring cities, friends on social networks, followers of blogs, 
links between webpages.---> Preserve neighbors instead of 
distances?
 

In vectorial data, if nothing else is known, it is reasonable that 
close-by points in some metric can be considered neighbors.

Soft neighborhood -
each point is a neighbor
with some weight and a 
non-neighbor with some 
weight

Some images and equations on the 
following slides are from the SNE paper 
(Roweis & Hinton '02).



  

Alternative Idea: Preserve Neighborhoods

Neighbors are an important concept in many applications: 
neighboring cities, friends on social networks, followers of blogs, 
links between webpages.---> Preserve neighbors instead of 
distances?
 

In vectorial data, if nothing else is known, it is reasonable that 
close-by points in some metric can be considered neighbors.

Probabilistic neighborhood 

(probability to be picked as 
a neighbor in input space. 
Unlike in SOM, sums to 1)



  

Alternative Idea: Preserve Neighborhoods

In vectorial data, if nothing else is known, it is reasonable that 
close-by points in some metric can be considered neighbors.

Probabilistic input neighborhood 

(probability to be picked as a neighbor)

Probabilistic output neighborhood

(probability based on display coords.)



  

Stochastic Neighbor Embedding

Two probability distributions over a set of items can be 
compared by the Kullback-Leibler (KL) divergence = relative 
entropy = amount of surprise when encountering items from the 
1st distribution when items were expected to come from the 2nd .

Use KL divergence to compare neighborhoods between the 
input and the output!

KL divergence is nonnegative, and zero if and only if the 
distributions are equal. The value of the divergence sum 
depends on output coordinates, and can be minimized with 
respect to them. This is Stochastic Neighbor Embedding.



  

Stochastic Neighbor Embedding, details

How to set the size of the input neighborhood?
- controlled by a scale parameter in the input distance

scale
parameter

- a scale parameter is hard to set without knowing a lot about 
the   original data features 
- it's beneficial to set the scale parameter differently for each 
  individual point: in a sparsely populated region, neighborhood 
  probability should maybe decrease less rapidly?

Idea: set an “effective number of neighbors”. In a uniform 
distribution over k neighbors, the entropy is log(k). Find the 
scale parameter value (by binary search in some interval) so 
that the entropy of p

ij
 becomes log(k) for a desired value of k. 

This value becomes different around each point.



  

Stochastic Neighbor Embedding, details

Adjusting the output coordinates is done by gradient descent to 
minimize the sum of KL divergences. Start from a random initial 
output configuration, then iteratively take steps along the 
gradient.

Can be seen as “forces” pushing and pulling between pairs of 
points to make the input and output probabilities more similar.



  

Stochastic 
Neighbor 
Embedding, 
example

SNE applied 
to grayscale 
bitmap images 
of handwritten 
digits. 

Features = 
pixel values.



  

Stochastic 
Neighbor 
Embedding, 
NIPS
authors

Authors of 
NIPS papers

Features=
vectors of
word counts

(how many of
each word does
an author have
in his/her
NIPS papers)



  

Stochastic Neighbor Embedding with multiple 
output locations for each data item? 

An interesting alternative of SNE is possible, where each data 
item has multiple locations on the display.

   Occupancy weight of i at b:th location

Perhaps useful if some relationships are hard to capture on-
screen with just one location per item.



  

Crowding Problem

When the output dimensionality is smaller than the effective 
dimensionality of data on the input, the neighborhoods are 
mismatched: 
- in a high-dimensional space, points can have many close-by 
neighbors in different directions. In a 2D space, you essentially 
have to arrange close-by neighbors in a circle around the 
central point, which constrains relationships among neighbors.
- in a high-dimensional space you can have many points that 
are equidistant from one another; in a 2D space at most 3 points 
are equidistant from each other.
- volume of a sphere scales as r d in d dimensions

Some images and equations on the 
following slides are from the t-SNE paper 
(van der Maaten & Hinton '08).



  

Crowding Problem

-----> On a 2D display, there is much less area available at 
radius r than the corresponding volume in the original space.
-----> Arranging high-dimensional items into a 2D space can 
easily place items more far off than they should be, because 
“there is no room left nearby”. 
------> In contrast, some items end up crowded in the center to 
stay close to all of the far-off points. This is the crowding 
problem.



  

t-distributed Stochastic Neighbor Embedding

Idea: avoid crowding phenomenon by using a more heavy-
tailed neighborhood distribution in the low-dimensional 
output space than in the input space. Neighborhood probability 
falls off less rapidly ----> less need to push some points far-off 
and crowd remaining points close together in the center.

Use student-t distribution with 1 degree of freedom = Cauchy 
distribution = infinite mixture of Gaussians.

(Note these are joint probabilities, not conditional probabilities 
like in SNE)
Numerator approaches an inverse-square law--->joint 
probabilities for far-off points almost invariant to map scale



  

t-distributed Stochastic Neighbor Embedding

Minimize divergence between symmetric probabilities



  

t-distributed Stochastic Neighbor Embedding

SNE: large gradient when t-SNE: positive gradient when
high-dim distance is small high-dim dist. is small, low- 
and low-dim distance is large dim is high, negative when 

other way around



  

t-distributed Stochastic Neighbor Embedding

t-SNE on 
digit data

Personal
observation:
can sometimes introduce
“phantom subclusters”
where no subcluster-division exists



  

t-distributed Stochastic Neighbor Embedding 
with output locations in multiple maps

An interesting alternative of t-SNE is possible, where each data 
item has is projected to multiple displays.

   Occupancy weight of i at k:th display

Claimed useful for 1) visualizing original data similarities that do 
not satisfy the triangle inequality, 2) visualizing objects with high 
centrality (they are the closest neighbors of a lot of other points)  



  

Part 2: Can we create “optimal” 
visualizations in some sense?



  

Preservation Optimal for a Task?

What is a “good visualization”, is it the “nicest looking one”?
Aesthetic considerations etc. are subjective ---> different 
visualization methods best for different analysts?

Algorithmic approaches to preserve various things can be seen 
as guesswork about what will produce the most useful 
visualization for an analyst.
------> Useful for what?
------> For doing something (a task)?

Purpose of visualization (one possible definition): to generate 
insights about the data in the mind of the analyst.
----> hard to quantify what works best for this (many kinds of 
possible “insights”, how to reach them depends on the “way of 
thinking” of each analyst)
-----> instead of “finding insight”, is there some simpler task that 
we could make visualizations for?



  

Preservation Optimal for a Task?

It is reasonable to assume that in scientific visualization, the 
analyst wants to achieve insight by analyzing something about 
the original data, based on what is visible on the display.
-------> That is, analyzing some aspect of the data is a subtask 
of generating insight.
------> Then preservation approaches should focus on 
preserving the thing that the analyst wants to analyze.

Preservation of distances is good if the analyst wants to 
measure distances between data points. But is that often a task 
the analyst does? 
------> Maybe in some applications (map projections!)
------> But in general nonlinear dimensionality reduction,
          output axes don't have a simple meaning
          --->distances are less informative.



  

Manifold Learning vs. Visualization

Many dimensionality reduction approaches using distances are 
based on the concept of manifold learning: the high-
dimensional data is assumed to lie on a lower-dimensional 
“sheet” folded into a complicated shape in the high-dimensional 
space.

The idea is: if we know the dimensionality of the underlying 
manifold, then using that as the output dimensionality of 
nonlinear dimensionality reduction can “recover” the manifold.
--------> Benchmark tests with artificial manifolds
             (swiss roll, loops, s-curve, etc.)



  

Manifold learning on the most common 
artificial data set, “swiss roll”



  

Manifold learning on the most common 
artificial data set, “swiss roll”



  

Manifold learning on the most common 
artificial data set, “swiss roll”



  

Manifold Learning vs. Visualization

Many dimensionality reduction approaches using distances are 
based on the concept of manifold learning: the high-
dimensional data is assumed to lie on a lower-dimensional 
“sheet” folded into a complicated shape in the high-dimensional 
space.

The idea is: if we know the dimensionality of the underlying 
manifold, then using that as the output dimensionality of 
nonlinear dimensionality reduction can “recover” the manifold.
--------> Benchmark tests with artificial manifolds
             (swiss roll, loops, s-curve, etc.)

Even if manifolds exist in real-life data sets, their dimensionality  
may be too high to be visualized. -----> The manifold learning 
assumption can be ill-suited for visualization.

Good methods should prepare for inevitable losses (modeling!).



  

Preservation of Neighborhoods for a Task?

Analyzing local neighborhoods of data items might be a subtask 
that some analysts perform to gain higher-level insight: for 
example, high-level structure of a graph (hubs, outlier areas) is 
built out of the set of local neighborhoods.

It turns out that preservation of neighborhoods can be 
formulated as optimization of an information retrieval task.



Example data set



“Orange-peel map”



“Squashed-flat sphere”



Minimize errors for best information retrieval.



Example data set



Embedding mininizes false positives 
(falsely retrieved neighbors)



Embedding mininizes misses (neighbors 
that were not retrieved)



1− precision=
P i
C
∩Qi

∣Qi∣

1−recall=
Qi
C
∩P i

∣P i∣

Proportion of 
false positives

Proportion of 
missed neighbors

A visualization must make a tradeoff between false 
positives and misses. All methods end up with some 
tradeoff. A good visualization method should allow the 
user to specify the desired tradeoff.



Embedding minimizes misses (neighbors 
that were not retrieved)

Embedding minimizes false positives 
(falsely retrieved neighbors)

A B



B

Embedding mininizes misses (neighbors 
that were not retrieved)

Embedding mininizes false positives 
(falsely retrieved neighbors)

A



Input neighborhood Output neighborhood



Input neighborhood Output neighborhood

∑
i
∑
j≠i

p j∣i log
p j∣i
q j∣i

Recall:

Proof of connection in Venna et al. 2010: assume some probabilities are uniformly-large, some 
are uniformly-small. Then there are 4 different kinds of terms in the sum. Show that above KL 
divergence is dominated by a cost that is proportional to a constant times number of misses.



Input neighborhood Output neighborhood

∑
i
∑
j≠i

q j∣i log
q j∣i
p j∣i

Precision:

Proof of connection is similar to recall: assume some probabilities are uniformly-large, some are 
uniformly-small. Then there are 4 different kinds of terms in the sum. Show that above KL 
divergence is dominated by a term proportional to a constant times number of false neighbors.



Input neighborhood Output neighborhood

Tradeoff measure

Minimize with respect to output coordinates y
i



Input neighborhood Output neighborhood

Tradeoff measure

Minimize with respect to output coordinates y
i

Neighbor Retrieval Visualizer
 



Of course NeRV can unfold the simple cases.



NeRV visualization of a complicated face image data set



New measures: smoothed precision (vertical axes) / recall (horizontal axes)



Standard precision / recall curves (novel for visualization!)



  

Next Lecture

Some variants of NeRV

Neighbor Embedding by Generative Modeling

Some supervised neighbor embedding approaches

Fast approximations for embedding large data

Quality assessment techniques

If time allows, graph embedding approaches
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Input neighborhood Output neighborhood

Tradeoff measure = t-NeRV cost function

t-distributed NeRV



Input neighborhood Output neighborhood

Tradeoff measure = NeRV cost function

Restrict y
i
 = WTx

i

Minimize cost with respect to projection W

NeRV with a linear projection 



Input neighborhood Output neighborhood

Tradeoff measure = NeRV cost function

Restrict y
i
 = WTx

i

Minimize cost with respect to projection W

NeRV with a linear projection 



Extension 1: NeRV with a linear projection. 
Neighborhoods and features can be given separately.



NeRV by generative modeling 
Stochastic Neighbor Embedding can be seen as a generative model, 
but it only focuses on recall (misses) because its cost function is 
dominated by misses.

Idea: change the retrieval model so that misses become less 
dominant, so that the model can also focus on false positives. 

New retrieval distribution: mixture of the user model and an 
explaining away model.

Cost function is 
log-likelihood 
(generative modeling):

new retrieval
distribution

plain user
model

explaining away model
= true neighborhood distribution

amount of 
explaining away



 
fMRI measurements of 
6 adults who received 
four types of stimuli: 
- tactile (red) 
- auditory tone (yellow) 
- auditory voice (green) 
- visual (blue).  

Visualization by the new 
method, strong 
explaining away used 
during training. Different 
stimuli types become 
separated in the 
(unsupervised) 
visualization.
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