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Reminder: Dimension reduction 
methods

• What to do if... I have to analyze multidimensional data???

• Solution: Dimensionality Reduction from 17 dimensions to 1D, 2D or 3D

• Problem: How to project the nodes faithfully into low-dimensional space (1D-3D)?
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Visualization of a data set
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(b) Time-series
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Figure 4.5: Small multiples of the system data set. In the component planes figure (a),

linking is done by position. Each subplot corresponds to one variable, and each dot in

each subplot to one data sample. The coordinates are from the PCA-projection of the

data. The name “component planes” comes from a similar technique used in visual-

ization of SOM, see Figure 4.8. The last component plane shows the color coding of

the map, and thus links the component planes with (b-d). In the time-series plot (b)

the system data for Tuesday 6:00 to 22:00 is depicted. The samples have been colored

using the color coding. The scatterplot matrix (c) shows the pairwise scatterplots of all

variable pairs. The objects in the scatter plots have been linked together using color. On

the diagonal, the histograms of individual variables are shown. In the parallel coordi-

nates visualization (d) each vertical axis corresponds to one variable. Each horizontal

line corresponds to one object such that linking is done explicitly using lines. The line

color encodes similarity between objects. Figures (a), (c) and (d) all show all of the

data, and can be used to detect correlations between variables.
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Analysing a lot of dimensions 
individually takes a lot of time 

and can miss relevant 
properties of the data, so we 

use dimensionality reduction to 
try to capture the important 

data properties in a few 
dimensions.

(Pictures from Juha Vesanto’s 
doctoral thesis, 2002.)



Principal component analysis (PCA)
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• PCA is stable, there are no additional parameters, and it 
is guaranteed always to converge to the same optima.

• Hence, PCA is usually the first dimension reduction 
method to try (if it doesn’t work, then try something 
more fancy)

PCA
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Two clusters
• The PCA fails to separate the clusters (you don’t see 

cluster structure from the 1D visualization, lower right)
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Example: Bi-Gaussian distribution — clusters [Linear methods] (17)

• The data points are distributed along two stretched and rotated

Gaussians
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Example: Bi-Gaussian distribution — clusters (continued) [Linear methods] (18)

• PCA transformation rotates the data so that the first principal component

(P1) is collinear to the direction of maximal total variance, loosing

information of the two clusters

• ICA transformation maps the first independent component (I1) to the

maximally non-Gaussian direction, revealing the clusters
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Example: Bi-Gaussian distribution — clusters (continued) [Linear methods] (18)

• PCA transformation rotates the data so that the first principal component

(P1) is collinear to the direction of maximal total variance, loosing

information of the two clusters

• ICA transformation maps the first independent component (I1) to the

maximally non-Gaussian direction, revealing the clusters
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Nonlinear data
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Properties of PCA

• Strengths
–Eigenvector method

–No tuning parameters

–Non-iterative

–No local optima

• Weaknesses

–Limited to second order statistics

–Limited to linear projections

The first principal component is given by the red line. The green line on the right gives 
the “correct” non-linear dimension (which PCA is of course unable to find).

PCA



Manifolds
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Properties of PCA

• Strengths
–Eigenvector method

–No tuning parameters

–Non-iterative

–No local optima

• Weaknesses

–Limited to second order statistics

–Limited to linear projections

• Left, PCA mapping would 
not find the “correct” 1D 
manifold, shown in green, 
because they try to 
preserve global features.

• Often, preserving local 
features, like trustworthiness, 
continuity (next lecture) or 
conformity - or manifold 
structure - is more 
important than global 
properties.

Manifolds



Dimension reduction methods

• Matlab+Excel example - PCA versus nonlinear multidimensional scaling!

9

Dimension reduction



Nonlinear dimensionality reduction and 
Manifold Learning



Topology, Spaces and Manifolds

• If variables depend on each other their joint distribution, the
support of their joint distribution does not span the whole space
→ induce some structure in distribution (geometrical locus,
object in space)

• Topology (mathematics) studies properties of objects that are
preserved through deformations, twisting and stretches
Tearing forbidden, guaranteeing that the intrinsic structure or
connectivity is not altered (circle topol. equivalent to ellipse)

• Tearing may still be interesting operation (unfolding the earth)
• Objects with same topological properties are called

homeomorphic



Topology, Spaces and Manifolds

A topological space is a set for which a topology is specified

For a set a topology T is defined as a collection of subsets of
with the following properties:

• trivially     and
• whenever 2 sets are in T, so is their intersection
• whenever 2 or more sets are in T, so is their union

Definition holds for Cartesian space    as for graphs (example:
topology in (set of real numbers) is union of all open intervals)



Topology, Spaces and Manifolds

More generally: topological space can be defined using
neighborhoods (Ns) and Haussdorf’s axioms (1919)

   -neighborhood for     or infinitesimal open set often defined
as open-Ball a set of points inside a d-dim. hollow
sphere of radius     > 0 centered on y



      of z exists such that

• each point y corresponds at least one neighborhood
containing y

• if        and          same y, then                   exists
• if       then
• for 2 distinct points 2 disjoint Ns of these points exist

Topology, Spaces and Manifolds

More generally: topological space can be defined using
neighborhoods (Ns) and Haussdorf’s axioms (1919)

   -neighborhood for     or infinitesimal open set often defined
as open-Ball a set of points inside a d-dim. hollow
sphere of radius     > 0 centered on y



Topology, Spaces and Manifolds

• Within this framework a topological manifold M is a
topological space that is locally Euclidean
(any object that is nearly flat on small scales)

• Manifold can be compact, non-compact, connected or
disconnected

• Embedding: representation of topological object (manifold,
graph,etc.) in cartesian space (usually    ) preserving
topological properties

• Smooth manifold is called a differentiable manifold
• For example: hollow d-dimensional hypersphere is a (d - 1)

manifold



Topology, Spaces and Manifolds
• Whitney (1930) showed that any P-manifold can be

embedded in
• A line can be embedded in 
• A circle is a compact 1-manifold, can be embedded in
• Trefoil (knotted circle) reaches the bound

• In practice the manifold is nothing more than the underlying
support of a data distribution known only through finite
samples

• 2 Problems appear:
(1) Dimen. reduction works with sparse and limited data
(2) assuming manifold takes into account the support of data

distr. but not other properties such as its density
→ problematic for latent variable finding (the model of
data density is of prime importance)

• Manifold does not account for noise (points may lie nearby)
→ DR re-embeds a manifold, noisy data is projected onto it



Intrinsic Dimension
• The intrinsic dimension(ality) of a random vector y equals the

topological dimension of the support      of the distribution of y
• Given a topological space     , the covering of a subset S is a

collection C of open subsets whose union contains S

•

A subset S of topological space     has topo-
logical dimension Dtop (Lebesgue covering dimen-

sion) if every covering C of S has a refine-
ment C' in which every point of S belongs
to a maximum of Dtop+1 open balls

• Topological dimension is difficult to estimate with a finite set
of points and for some objects behave weird (Hilbert curve) the
topological dimension just seems wrong (Sierpinski triangle)
→ use other definitions of the intrinsic dimension like fractal
dimension or definitions based on DR methods



Hilbert Curve
1D object that evolves iteratively and progressively fills a square



Intrinsic Dimension
Fractal Dimensions most popular examples

• Box-Counting dimension (Capacity dimension)
Determine the hypercube that circumscribes all data points,
decompose it into a grid of smaller hypercubes with edge
length      , determine           (number of hypercubes) that are
occupied by one or several data points, compute
Limit             gives dcap

• Correlation dimension (Grassberger and Procaccia)
similar interpretation as capacity dimension, but local: look at
number of neighboring points closer than certain threshold

Local methods:

• decompose the space into local patches
• carry out PCA on each space window assuming the manifold

is approximately linear on that scale
• dimension of the manifold is obtained as average estimate of

the local PCAs (weighted by number of points in corresponding window)



Intrinsic Dimension

Sketches for box counting (left) and local PCA (right) intrinsic
dimension estimation



Outlook

• (un-)supervised Dimensionality reduction and visualization
• Generalized framework for dimensionality reduction
• Quality assessment



Nonlinear dimensionality  
reduction methods



Introduction

● Represent high-dimensional data by low-dimensional 
counterparts preserving as much information as possible 

● Ill-posed problem: which data is relevant to the user? 
(dependent on the specific data domain and situation at hand) 

● Huge variety of methods proposed with different properties 



Dimension reduction methods

• There are several methods, with different optimization goals and complexities

• We will go through some of them (most not in any detail, last ones not at all):

• Principal component analysis (PCA) - “simple” linear method that tries to 
preserve global distances

• Multidimensional scaling (MDS) - tries to preserve global distances

• Sammon’s projection - a variation of the MDS, pays more attention to short 
distances 

• Isometric mapping of data manifolds (ISOMAP) - a graph-based method (of the 
MDS spirit) 

• Curvilinear component analysis (CCA) - MDS-like method that tries to preserve 
distances in small neighborhoods

• Maximum variance unfolding - maximizes variance with the constraint that the 
short distances are preserved  (an exercise in semidefinite programming) 

• Self-organizing map (SOM) - a flexible and scalable method that tries a surface 
that passes through all data points (originally developed at HUT) 

• Independent component analysis (ICA) - a fast linear method, suitable for some 
applications

• Nerv (NEighbor Retrieval Visualizer, originally developed at HUT)

24

Dimension reduction



Different methods, different properties

● Spectral techniques: the rely on the spectrum of the 
neighborhood graph of the data, preserving important 
properties of it. 

● Example methods: Locally Linear Embedding (LLE), Isomap, 
Laplacian Eigenmaps 

● usually unique algebraic solution of the objective 

● in order to make the cost functions unimodal and to make 
algebraic solution of objective possible, the methods are 
based on very simple affinity functions 



Different methods, different properties

● Non-parametric methods: they usually do not find a general 
mapping function from a high-dimensional space to a lower-
dimensional space, instead they find a mapping a finite data 
set 

● They can use more complicated affinities between data 
points, but it comes with higher computational costs 

● Additional modeling/optimization and computational effort 
must be done for out-of-sample extension (for mapping new 
data points that were not int he training set)



Different methods, different properties

● Explicit mapping functions: some methods explicitly learn 
(infer) a (non-)linear mapping function 

● linear functions: Principal Component Analysis, Linear 
Discriminant Analysis 

● nonlinear functions: autoencoder networks, locally linear 
coordination 



Different methods, different properties

● Supervised techniques: use ”ground truth” information 
provided by a teacher (oracle) to learn the mapping or 
mapping function 

● Linear Discriminant Analysis, Partial Least Squares 
regression, adaptive metrics 

● non-linear extensions by kernels 



Dimensionality Reduction Setting

Assume we have 
● a high-dimensional data space 
● a data set from the data space:  

We want to find 
● an output space (embedding space) 
● low-dimensional representatives 

for the data set in the embedding space  
 
General aim of dimensionality reduction: find a mapping 

such that the interesting properties of the data distribution in      
are preserved as well as possible also in



Multidimensional scaling (MDS)

• Multidimensional scaling (MDS) is a dimension reduction 
method that tries to preserve a measure of similarity 
(or dissimilarity or distance) between pairs of data 
points

• MDS has roots in the field of psychology (one 
consequence: lots of conventional notation)

• MDS can be used as

- an exploratory visualization technique to find the 
structure of the data; and

- a tool to test hypothesis.

30

MDS



Color similarities

31

Example: color similarities [Non-linear methods] (29)

• Psychological test: how is the similarity of colors perceived?

• Pairs of 14 colors were rated by 31 people. Ratings were averaged:

Similarities of colors with different wavelengths (lower half, Ekman 1954) and residuals of 1D MDS representation (upper half) [B 4.1].

• Psychological test in 1950’s: how is the similarity of colors 
perceived?

• Pairs of 14 colors were rated by 31 people. Ratings were 
averaged.

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram: MDS



Color similarities
• The 14 colors where then projected by MDS (trying to 

preserve similarities) into 2D and 3D representations. The 
2D representation shows that the red-violet (wavelength 
434 nm) is perceived quite similar to blue-violet 
(wavelength 674 nm)

32

Example: color similarities (continued) [Non-linear methods] (30)

• High dimensional color space was compressed by the MDS algorithm to

2D and 3D subspaces. The 2D representation of the colors show that

the red-violet (wavelength 434 nm) is perceived to be close to the

blue-violet (wavelenght 674 nm).

Ordinal MDS representations for color proximities in 2D and 3D [B 4.1, 4.3]

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram:

Example: color similarities (continued) [Non-linear methods] (31)

CIE chromaticity diagram: MDS



Multidimensional scaling (MDS)
• More formally, an MDS algorithm is given the original 

distances pij (called proximities) between data points i and j

• MDS algorithm then tries to find a low-dimensional (usually 
2-3D) representation X for the points (X is just used to 
denote the Euclidean coordinates of the projected data 
points)

• More formally, MDS tries to find representation X that 
minimizes the error function (called stress, by convention)

where dij(X) is the Euclidean distance between the data 
points i and j in representation X; and f is a function that 
defines the MDS model (next slide). 

33

�r =
�

i<j

(f(pij)� dij(X))2

MDS



Multidimensional scaling (MDS)

• The choice of f defines the MDS model. For example:

- f(pij)=pij - absolute MDS (linear model, = PCA)

- f(pij)=b pij - ratio MDS (linear model)

- f(pij)=a+b pij - interval MDS (linear model)

- f(pij)=a+b log pij - useful in psychology

- f(pij) is any monotonically increasing function (ordinal or 
nonmetric MDS) - this would be the most important special 
case of MDS

• The parameters of f (like a and b above) are optimized at the 
same time as the representation X (the details of the 
optimization algorithms is outside the scope of this course)

• It is conventional to denote the “transformed proximities”, or 
“approximate distances”,  by d-hats, 

34

�r =
�

i<j

(f(pij)� dij(X))2

d̂ij = f(pij).

MDS



Shepard diagram
• There are two classical visualizations of MDS: Shepard diagram 

(shows the goodness of fit) and Scree plot (shows optimal 
dimensionality of the data)

• Shepard diagram shows the low-dimensional distances dij 

(white circles) and the target disparities f(pij) (filled circles) as 
a function of the original high-dimensional proximities pij.

• Scree plot shows the MDS cost function (stress) as a function of 
the number of dimensions  

Shepard diagram [Non-linear methods] (34)

Shepard diagrams for color similarity plots:

2D MDS 1D MDS
Shepard diagrams for 2D and 1D MDS representations of color data [B 4.3, 4.4].

Shepard diagrams of 2D and 1D 
MDS projections of the color 
data.

• Each point is a pairwise 
comparison of two colors 

• Horizontal axis positions 
are original similarities 
(not distances)

• Filled circles are 
transformations of 
similarities to distances,

• Empty circles are distances 
in the low-dimensional 
space.

MDS



Performance of MDS
• MDS is tries to preserve the large distances at the expense of small ones, hence, it can 

“collapse” some small distances on the expense of preserving large distances

• Next lecture: A projection is trustworthy (precision) if k closest neighbors of a sample on 
the projection are also close by in the original space. A projection preserves the original 
neighborhoods (recall) if all k closest neighbors of a sample in the original space are also 
close by in the projection.

36

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/48
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mapping and non-metric MDS were selected to represent
MDS methods since they have beneficial properties; Sam-
mon's mapping emphasizes the preservation of short dis-
tances which are the focus of our trustworthiness measure
as well. Non-metric MDS tries to preserve rank orders of
distances, which is the error measure we use. For hierar-
chical clustering, there are lots of variants; we compared
all variants available in the Cluster program by Eisen [16]:
centroid linkage, complete linkage, and single linkage.
Complete linkage gave clearly better results than the other
variants and is the only one included in the results below.

All methods used the same inner product (correlation)
metric, which is the most commonly used metric for gene
expression data sets. Additional justification for the choice
is that correlation metric works well for classification of
the specific yeast dataset (preliminary studies). It is imper-
ative to use the same metric for all methods to keep the
results comparable. In principle, the whole study could be
repeated for different metrics. However, it is unlikely that
the conclusions would change; in an earlier experiment
[17] on Euclidean metrics for non-biological data sets, the
conclusions were the same.

Trustworthiness
The results are shown in Figure 2. We focus on trustwor-
thiness of relatively small neighborhoods, of the order of

some tens of genes, which are perceived to be most sali-
ently proximate in displays such as Figure 8. In this range,
hierarchical clustering is the best for the smallest neigh-
borhoods (k < 10), and SOM after that. The excellent per-
formance of hierarchical clustering at very small
neighborhood sizes was to be expected as it explicitly con-
nects the closest points first.

Preservation of the original neighborhoods
As discussed in the Background Section, all methods make
a compromise between trustworthiness and preservation
of the original proximities. The latter kinds of errors result
from discontinuities in the projection; we measured them
by how well neighborhoods of data points in the original
data space were preserved. Non-parametric measures were
again used to avoid biases. The neighborhood of size k of
an expression profile is defined as those k profiles that
have the smallest distance (here, strongest correlation)
from the profile. If a profile becomes projected away from
the neighborhood, the error is quantified by rank dis-
tances on the display. The measure M2 (Eq. 4; for details,
see the Methods Section) summarizes the errors for all
expression profiles. For these data sets, the SOM and mul-
tidimensional scaling (Sammon and non-metric MDS)
are the best for preserving small (k < 50) original
neighborhoods (Fig. 3). Hierarchical clustering is by far
the worst.

Trustworthiness of the visualized similarities (neighborhoods of k nearest samples)Figure 2
Trustworthiness of the visualized similarities (neighborhoods of k nearest samples). Sammon: Sammon's mapping, NMDS: non-
metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with the ultrametric distance measure 
and with the linear distance measure. RP: Random linear projection is the approximate worst possible practical result (the 
small standard deviation over different projections, approximately 0.01, is not shown). The theoretical worst case, estimated 
with random neighborhoods, is approximately M1 = 0.5. a) Yeast data. b) Mouse data.
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Precision and recall as a function of the neighborhood size k for a yeast 
data set. Non-metric (ordinal) MDS (NMDS) is shown in blue. Larger 

precision and recall is better.

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/48

Page 5 of 13

(page number not for citation purposes)

Improving the trustworthiness
Trustworthiness can be improved by discarding the least
trustworthy data samples and analyzing them separately.
Figure 4 shows the increase of trustworthiness as the
number of discarded samples is increased. It is striking
that although the performance of most of the other meth-
ods increases rapidly, they do not reach even the starting
point of the SOM before nearly one third of the data set
has been discarded. The ultrametric measure (see the
Methods Section) of similarity for hierarchical clustering
has the smallest improvement rate.

Visualization of functional similarity by learning metrics
A main problem in comparing gene expression profiles is
to choose which properties to compare, that is, how to
define the similarity measure or, equivalently, the metric.
When comparing knock-out mutation profiles of genes,
the relevant mutations need to be selected and scaled suit-
ably for each gene.

There is not enough prior knowledge to do this manually,
and our goal is to learn automatically the proper metric
from interrelationships between the expression data set
and another data set that is known to be relevant to gene
function: the functional classification of the genes. In an
additional study, the primary data are the gene expression
profiles of human genes measured in different tissues, and

the auxiliary data used to guide the learning are the activ-
ities of the homologous mouse genes in a set of tissues
[13].

Details on how to learn the metrics are described in the
Methods Section [14,15]. In summary, the metric is such
that functional classes change uniformly in the new met-
ric. If some of the knock-out mutations have only a weak
correlation with the functional classes, they contribute
only weakly in the measured similarity among expression
profiles. The similarity measure focuses on those differ-
ences that are relevant for the functional classes.

The metric is defined as a local scaling of the expression
space, which makes it very general; the contributions of
the knock-out profiles to the similarities may be different
for different genes.

We applied the new metric to one of the visualization
methods, the SOM, and compared the results with the
same method in the standard correlation metric. For tech-
nical details of combining of the SOM and the learning
metrics, see the Methods Section.

We began by measuring quantitatively whether SOMs in
learning metrics represented the functional classes better
than those in the standard inner product metric. In short,

Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data spaceFigure 3
Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data space. Sammon: 
Sammon's mapping, NMDS: non-metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with 
the ultrametric distance measure and with the linear distance measure. RP: Random linear projection is the approximate worst 
possible practical result (the small standard deviation over different projections, about 0.01, is not shown). The theoretical 
worst case, estimated with random neighborhoods, is approximately M2 = 0.5. a) Yeast data. b) Mouse data.

5 10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sammon

NMDS

SOM

HC, ultrametric

HC, linear order

RP

5 10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sammon

NMDS

SOM

HC, ultrametric

HC, linear order

RP

M

k k

b)a)

2

Figures are from Kaski, 
Nikkilä, Oja, Venna, 
Törönen, Castrén, 
Trustworthiness and 
metrics in visualizing 

similarity of gene 
expression, BMC 

Bioinformatics 2003, 
4:48.RecallPrecision

MDS



Performance of MDS
• Next lecture: Relatively better recall, worse precision

• MDS algorithms typically have running times of the 
order O(N2), where N is the number of data items.

• This is not very good: N=1,000 data items are ok, but 
N=1,000,000 is getting very slow.

• Some solutions: use landmark points (i.e., use MDS only 
on a subset of data points and place the remaining 
points according to those, use MDS on cluster 
centroids etc.), use some other algorithm or 
modification of MDS.

• MDS is not guaranteed to find the global optimum of 
the stress (cost) function, nor it is guaranteed to 
converge to the same solution at each run (many of the 
MDS algorithms are quite good and reliable, though)
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Classical Metric Multidimensional Scaling

First major steps by Young and Householder (1938): 
Classical metric MDS is defined as linear generative model 
      with     and 
where the observed data X and the latent variables are assumed 
to be centered. 
Pairwise affinities given by scalar products   
 
Gram matrix: 
 
 
Find solution by eigenvalue decomposition of Gram matrix S: 
          U = n x n orthonormal matrix 
           Ʌ= diagonal eigenvalue matrix  
   eigenvalues sorted in descending order



Classical Metric MDS and PCA

● PCA needs data coordinates X, not needed in metric MDS 
● PCA decomposes covariance, which is proportional to 

 
 

● metric MDS decomposes Gram matrix 
 

● It is easy to show that 
 
 

● To do so, replace X by its singular value decomposition



Example Data

swiss roll: 1000 three-dimensional samples



MDS

Pairwise Euclidean distances: 
 
 
 
      error = stress (least squared error (LSE))



Some MDS Variants

● Nonmetric MDS (Shepard 1962) and (Kruskal 1964) focuses 
on rank information ranks of closenesses between points 
instead of the specific interpoint distances: 

● Proximities can be transformed to distances by 
       with a monotonic transformation f 

● Optimization done by minimizing 
 
 
 

where the normalizing constant is 



Sammon Mapping

• It is considered a non-linear approach as the projection 
cannot be represented as a linear combination of the original 
variables as possible in techniques such as principal 
component analysis.

• The minimization can be performed either by gradient 
descent. The number of iterations need to be experimentally 
determined and convergent solutions are not always 
guaranteed. Many implementations prefer to use the first 
Principal Components as a starting configuration.

• The Sammon mapping increases the importance of small 
distances and decreases the importance of large distances  
→ nonlinear mapping
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Summary

• How to project items into lower dimension when 
pairwise distance/similarity is known

• MDS, PCA try to preserve large distances

• No algorithm can generally preserve faithfully all 
features of the original data

• Next: SOM and CCA
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• Additional reading on PCA: any book on matrix algebra

• Additional reading on MDS: 

- Borg, Kroenen, Modern multidimensional scaling: theory and applications. 
Springer 1997.

- Buja, Swayne, Littman, Dean, XGvis: interactive data visualization with 
multidimensional scaling, 1998.  (XGVis and GGobi are open source 
visualization tools that include MDS; MDS is also available, e.g., in SAS 
toolkit and GNU R [e.g., cmdscale and isoMDS in package MASS])

• NIPS 2005 tutorial by Saul, Spectral methods for dimensionality reduction, 
http://www.nips.cc/Conferences/2005/Tutorials/

• Jarkko Venna 2007, Academic Dissertation

• Lee & Verleysen, 2007. Nonlinear dimensionality reduction. Springer.

• Contents (today and Thursday):
1. Dimension reduction methods: overview
2. Principal component analysis (PCA) 
3. Multidimensional scaling (MDS)
4. Self-organizing Maps
5. CCA

More literature on dimension 
reduction

http://www.nips.cc/Conferences/2005/Tutorials/

