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Feature extraction
● feature extraction: (more general) transform the original  

to                     (k < d). 

Example transformations:
Linear transformations: Principal component analysis (PCA), 
Linear Discriminant Analysis (LDA), Factor Analysis (FA).
Some metric learning methods are similar to linear 
transformations.

Nonlinear transformations: Self-Organizing Map (SOM), 
Multidimensional scaling (MDS), manifold embedding methods.

Often based on assuming the data lies on a low-dimensional 
manifold.

● Today's lecture: linear transformations and kernel-based 
nonlinear transformations
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Principal Component Analysis 1
Definitions:
● PCA finds a low-dimensional linear subspace such that when x is 

projected there information loss (here dened as variance) is 
minimized.

● Finds directions of maximal variance.
● Equivalent to finding eigenvalues and eigenvectors of the 

covariance matrix.
● Can also be derived probabilistically (see Tipping, Bishop (1999) 

Mixtures of Probabilistic Principal Component Analyzers. Neural 
Computation 11: 443-482).
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Principal Component Analysis 2

Figure 6.1: Principal components analysis centers the sample and 
then rotates the axes to line up with the directions of highest 
variance. If the variance on z

2
 is too small, it can be ignored and we 

have dimensionality reduction from two to one. From: E. Alpaydın. 
2004. Introduction to Machine Learning. Copyright The MIT Press.
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Principal Component Analysis 3
Solution:
● More formally: data 
● Center data:                          , where 
● Compute the covariance matrix 
● Diagonalize S using Spectral Decomposition: 

where 
● C is an orthogonal (rotation) matrix satisfying

                              (identity matrix), and 
● D is a diagonal matrix whose diagonal

elements are the eigenvalues 
● i:th column of C is the i:th eigenvector.

● Project data vectors yt
 to principal components  

(equivalently                 ).
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Principal Component Analysis 4
● Observation: covariance matrix 

of                is a diagonal matrix 
D whose diagonal elements 
are the variances.

where the diagonal elements 
of D are the variances 

● Eigenvalues           variances 

Figure 6.1: Principal components 
analysis centers the sample and 
then rotates the axes to line up with 
the directions of highest variance. If 
the variance on z

2
 is too small, it 

can be ignored and we have 
dimensionality reduction from two 
to one. From: E. Alpaydın. 2004. 
Introduction to Machine Learning. 
Copyright The MIT Press.
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Principal Component Analysis 5
● Idea: in the PC space (z space), k first principal components

explain the data well enough, where k < d.
● ”Well enough” means here that the reconstruction error is small 

enough. More formally:

● Project the data vectors yt
 into        using                      , where         

                          is a matrix containing the first k columns of C. 
(”W = C(:,1:k)”).

●       is a representation of yt
 in k dimensions.

● Project      back to yt
 space:

● The average reconstruction error can be shown to be
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Principal Component Analysis 6
● Result: PCA is a linear projection of data from         into         such  

that the average reconstruction error                               is  
minimized.

● Proportion of Variance (PoV) Explained:
● Some rules of thumb to find a good k:                    , or PoV 

curve has an ”elbow”.
● Dimension reduction: it may be sufficient to use      instead of     

to train a classifier etc.
● Visualization: plotting the data to      using k = 2 (first thing to do 

with new data).
● Data compression: instead of storing the full data vectors yt it 

may be sufficient to store only       and then reconstruct the 
original data using                      , if necessary. 
● For example, DCT (an approximate of PCA) in JPEG.
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Principal Component Analysis 7
Matlab implementation:
● Learning: (suppose samples are columns of X)

function [W,m] = pca_learning(X,k)

m = mean(X,2);

[W,~] = eigs(cov(X'), k);

● Use: (suppose x_new is a column vector)

Z = W' * bsxfun(@minus, X, m);

z_new = W' * (x_new - m);
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Principal Component Analysis 7
Probabilistic formulation
● Probabilistic model (generative model of the observed data):

 
● Prior for the hidden variables:
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Principal Component Analysis 8
Probabilistic formulation
● Probabilistic model (generative model of the observed data):

 
● Prior for the hidden variables:
● Hidden variables can be marginalized out:

Benefits of using the probabilistic formulation:
● a probabilistic way to handle the tailing eigenvalues
● various priors can be applied to W and m
● standard algorithms for probabilistic models (e.g. EM)
● provides connection to other probabilistic models
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PCA: Toy Example
● Same example used previously for feature selection 

(forward/backward selection)
● Toy data set consists of 100 10-dimensional vectors from two 

classes (1 and 0)

● First two dimensions x
1

t and x
2

t: drawn from Gaussian with unit 

variance and mean of 1 or -1 for the classes 1 and 0 respectively.
● Remaining eight dimensions: drawn from Gaussian with zero 

mean and unit variance, that is, they contain no information of the 
class.

● Optimal classifier: if x
1
+x

2
 is positive the class is 1, otherwise the 

class is 0.
● Use nearest mean classifier.
● Split data in random into training set of 30+30 items and 

validation set of 20+20 items
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PCA: Toy Example cont.
● PCA done to the previous 10-dimensional toy example.
● The first column of C shows the special role of x

1
 and x

2
:
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PCA: Toy Example cont.

14



PCA: OptDigits Example
● The OptDigits data set contains 5620 instances of digitized 

handwritten digits in range 0-9.
● Each digit is a          vector: 8 x 8 = 64 pixels, 16 grayscales.
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PCA: OptDigits Example cont.
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PCA: OptDigits Example cont.
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PCA: Image Compression Example
● An image can be divided into small blocks of e.g. 10x10 pixels 
● Each 10x10 block of a grayscale image corresponds to a 100-

dimensional vector of pixel values.
● The whole image (many blocks) corresponds to a data set of 

many 100-dimensional vectors
● This 100-dimensional data can be projected by PCA. The 

contents of each block can then be reconstructed from a few 
PCA projection values --->  image compression!
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PCA: Discussion
● PCA can be used as a preprocessing step for decorrelation

(notice that the principal components zt

i
 are uncorrelated)

● If different components i of the observations, xt

i
, are scaled 

differently, PCA will concentrate on the largest ones
● Solution: rescale each component i to unit variance before 

applying PCA
● Probabilistic PCA can be

● used in case of missing values
● extended in many ways
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Linear Discriminant Analysis 1 
● PCA is an unsupervised method (class information is not usually 

used).
● Linear Discriminant Analysis (LDA) is a supervised method for 

dimensionality reduction in classication problems.
● As PCA, LDA can be accomplished with standard matrix algebra 

(eigenvalue decompositions etc.). This makes it relatively simple 
and useful.

● PCA is a good general purpose dimensionality reduction method, 
LDA is a good alternative if we want to optimize the separability 
of classes in a specific classication task, and are happy with a 
dimensionality of less than the number of classes (k < K).
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Linear Discriminant Analysis 2 
● Originally introduced for two-class problems, idea: transform the 

data so that the classes (c1, c2) are separated as much as 
possible

● Within-class scatter matrix

where                               and mi is the number of samples in ci 
● Between-class scatter matrix

● Optimize projection matrix      to maximize ratio of between-class 
to within-class scatter: 

    Optimized matrix     given by 
    eigenvectors of

20



Linear Discriminant Analysis 3 
● Multi-class case is similar:

● Within-class scatter matrix

where                               and mi is the number of samples in ci 
● Between-class scatter matrix

● Optimize projection matrix      to maximize ratio of between-class 
to within-class scatter: 

    Optimized matrix     given by solving
    the generalized eigenvalue problem
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Linear Discriminant Analysis 4 
● The rank of the within-class scatter matrix is upper-bounded by 

m-n, and the rank of the between-class scatter matrix is upper 
bounded by n-1. ---> LDA cannot give more projection directions 
than n-1 (number of classes - 1).

● Classification in the low-dimensional space can be done e.g. by 
finding the nearest class centroid of a new point

● LDA projection maximizes mean-squared distance between 
classes in the projected space, not the same as minimizing 
classification error. Pairs of classes that are far apart dominate 
the LDA criterion, and can leave overlap between the remaining 
classes.
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LDA: OptDigits Example
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Independent Component Analysis 1 
● Imagine you are in a room with two people talking simultaneously
● Two microphones in different locations are recording the sound
● The microphones record the signals as time series of amplitudes, 

x
1
(t) and x

2
(t)

● Each signal is a weighed average of the speech signals of the 
speakers denoted by s

1
(t) and s

2
(t), so that

 
where a

11
, a

12
, a

21
, a

22
 are mixing parameters (depending e.g. on 

distances from microphones to speakers)

● We want to estimate the original sources s
1
(t) and s

2
(t) using only 

the recordings x
1
(t) and x

2
(t).

● Called the cocktail party problem.
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Independent Component Analysis 2 

All ICA related figures on these slides are from Hyvärinen and Oja, Independent Component Analysis: 
Algorithms and Applications, Neural Networks 2000
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Independent Component Analysis 3 
● If we knew the mixing parameters we could solve the sources by 

a linear matrix equation, but here the mixing parameters are 
unknown.

● It turns out the source signals and mixing parameters can be 
solved using assumptions about statistical properties of the 
source signals. It is enough to assume the sources are 
statistically independent.
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Independent Component Analysis 4 
● ( Try the cocktail party demo at:

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi )
Unfortunately the above demo is currently not functional. You can 
see a YouTube video of it here: 
https://www.youtube.com/watch?v=T0HP9cxri0A

● ICA was originally proposed for applications similar to the cocktail 
party problem, but is now used for a lot of applications, for 
example analysis of EEG recordings measured from several 
sensors attached to the scalp.

● ICA can be used for feature extraction. Does not have to be for 
time series signals.
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Independent Component Analysis 5 
Basis functions 
(components) found 
by ICA from patches 
of natural images. 

Each block in an 
actual image would 
be a linear 
combination of 
these patches.
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Independent Component Analysis 6 
Definition (generative model): 
● Assume we observe n linear mixtures x1,...,xn of n independent 

components

● Each mixture xj and each independent component sk is a random 
variable, observed values are samples of the random variables

● Assume the mixtures and independent components are zero-
mean (can be achieved by substracting mean from observations)

● In vector notation: x = [x1,...,xn]T, s = [s1,...,sk]T, matrix A contains 
the elements aij . Denote the jth column of A by aj. Then

 

● We want to estimate A, or equivalently an unmixing matrix W so 
that                . Closely related to blind source separation.
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Independent Component Analysis 7 
Assumptions:
● To solve the ICA task we assume the underlying sources are 

statistically independent.
● We also assume their distributions are nongaussian
● We do not assume we know the distributions
● We assume the mixing matrix is square (”as many microphones 

as voices”)

Ambiguities:
● We cannot determine variances of the independent components 

(ICs): any scaling of a source sj can be compensated in A.
● We cannot determine order of sources (any permutation matrix 

applied to sources can be compensated in A)
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Independent Component Analysis 8 
Simple example: How to measure inpendence?

Theory: y1,y2 are independent if
p(y1,y2) = p1(y1)p2(y2)

Then, for expectations, 
E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)}

Being uncorrelated is not
Original sources     Mixed with enough to be independent,
distributed in a     A=[2 3; 2 1]. but independent implies uncorrelated.
square, indep.     Mixtures are –-> Search for ICs often constrained to 

    not indep.       uncorrelated components.
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Independent Component Analysis 9 
● Why independent components are assumed 

to be nongaussian: if two variables are IID
Gaussian with variance 1, any orthogonal 
transform of the variables has the same
distribution as the original variables → 
ICs could only be estimated up to an
orthogonal transform!

● Nongaussianity turns out to be a good criterion for independence:
central limit theorem--> a sum of indep. variables tends towards 
a Gaussian distribution

● Idea of ICA: optimize an unmixing matrix W so that the unmixed 
variables are as nongaussian as possible! 

● To estimate just one component by                                    , 
maximize nongaussianity of            with respect to w

● To find more ICs, maximize again, constrain to be uncorrelated 
with previous ICs
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Independent Component Analysis 10 
Measures of nongaussianity:
● Kurtosis

simple to estimate, nice theoretical properties, e.g. 
kurt(x1+x2)=kurt(x1)+kurt(x2) for independent variables.
But can be sensitive to outliers – not robust.

● Negentropy

where                                                    (f : prob. density function)

and ygauss is a Gaussian variable with the same mean and 
covariance metrix as in y. Idea: Gaussian variables are known to 
have the highest entropy of all variables with the same second-
order statistics. The smaller the entropy of y is compared to a 
Gaussian variable, the more nongaussian y is.

Negentropy is invariant under invertible linear transformations.
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Independent Component Analysis 11 
● Approximation of negentropy:   

where ki are positive constants, v is a zero-mean unit-variance  
Gaussian variable, and Gi are some nonquadratic functions, e.g.

● Mutual information: 

For unit-variance yi:                                                   (C: constant)

Minimizing mutual information = maximizing negentropy (when 
estimates constrained to be uncorrelated)

● Maximum likelihood: strongly related to minimization of mutual 
information. But requires good estimation of densities, at least 
are they ”subgaussian” (kurtosis < 0) or ”supergaussian” ( > 0)
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Independent Component Analysis 12 
Computation of ICs (fastICA algorithm):
● Function g for derivative of the nonquadratic function. For G1, G2:  

g1(u) = tanh(a1u),  g2(u) = u exp(−u2/2)
● Preprocessing: substract mean from data; then whiten data to 

have unit covariance matrix: set                            where
                           is the eigenvalue decomposition of the 
covariance matrix,                            , and 

● FastICA:

1. Choose an initial (e.g. random) weight vector w  

2. Let

3. Let

4. If not converged, go to 2.

● Further components: rerun fastICA, decorrelate from previous ICs after 
each iteration: set                                                    then renormalize by
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Independent Component Analysis 13 
● Once ICs have been found they can be used in dimensionality 

reduction, e.g. by feature selection methods discussed 
previously. (Or try ranking by nongaussianity (negentropy), etc.)

Some applications of ICA: 
● separating artifacts in Magnetoencephalography (MEG) data
● finding hidden factors in financial data like stock portfolios or 

cashflow data of stores
● representing natural images
● separating user's signal from interfering signals in 

telecommunications
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Kernel based methods

● The methods so far on the lecture all optimize linear 
transformations of the form y=Wx.
● Resulting low-dimensional coordinates Wx are linear 

combinations of the original coordinates.
● It is possible to optimize such transformations after first 

performing a fixed nonlinear mapping xmapped = f(x), so that 
y=Wxmapped = Wf(x). 
● If f is simple to compute, then W can be learned as usual 

from the computed f(x) values. 
● Resulting low-dimensional coordinates Wf(x) are linear 

combinations of the f(x) coordinates but are nonlinear 
mappings of the original x. 

● Problem: computational complexity increases as dimensionality 
of f(x) increases.

● Kernel trick: it is often enough to be able to compute inner 
products between f(x)Tf(x'), without explicitly knowing f(x) or f(x')
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Kernel PCA 1

● Denote the nonlinear feature transformation here by
and the set of l transformed input samples by

● The covariance matrix we need in PCA is then

● We must compute each eigenvalue             and eigenvector V for 
the matrix satisfying                   .

● It turns out the solutions V lie in the span of the data: they are 
linear combinations of                               . The eigenvalue 
problem becomes
where

for some coefficients

● The eigenvalue problem can be written in terms of the 
coefficients!
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Kernel PCA 2

● Inserting the equation for V in terms of the coefficients, the 
eigenvalue problem becomes                                  where
K is an l x l inner-product (kernel) matrix:

    is a column vector with entries
● To solve the eigenvalue problem, solve instead

for nonzero eigenvalues. 
● Principal component projection directions are normalized to have 

unit norm,                       . Inserting the definitions, that becomes

thus the square root of      becomes the normalization factor for
● To project a test point x onto the k:th eigenvector:

● None of the operations require the actual transformed features, 
the inner products between them are enough! 39



Kernel PCA 3

● Many interesting kernels can be defined that satisfy the 
properties of an inner product between some transformed 
features, but the transformed features themselves would be 
expensive/impossible to compute!

● Polynomial kernel of order d:
(corresponds to a transformation onto all products of d original 
input values)

● Radial basis function:
● Sigmoid kernel:

● After the kernels have been computed, computational complexity 
depends on the size of the kernel matrix but not on the original 
input dimensionality or the transformed input dimensionality

parameters of
the kernel
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Kernel PCA 4

Using a nonlinear kernel implicitly causes PCA to be done in a 
high-dimensional space nonlinearly related to the original 
features. Dotted lines = contours of constant principal 
component feature value

All kernel PCA pictures from Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. 
Kernel principal component analysis. Proceedings of ICANN'97, 1997. 41



Random Projections
● Simple idea: Project using a random matrix W,

e.g. draw each element from a normal distribution
● Mathematical proofs of some good properties
● Very simple and computationally light method
● Surprisingly impressive empirical results
● This has gained popularity in ML research (Keywords: random 

projections, compressed sensing, extreme learning machine, 
random features)
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