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Part 1: Part 1: 
PreliminariesPreliminaries
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How to avoid problems of high-
dimensional data?

On the last lecture we saw that:
● High-dimensional spaces have surprising properties 

which make them behave differently than our 
expectations.  

● Data is essentially always sparse in high-dimensional 
spaces

● High-dimensional models often have many parameters
● When we have sparse data compared to the number of 

parameters, overfitting often happens

How can we avoid the problems? Two approaches to 
avoid or at least attenuate the e ects in the presence of ff
high-dimensional data:
(1) Try to improve the separation between relevant and 

irrelevant variables
(2) Try to detect dependencies between the (relevant) 

variables, and remove unnecessary redundancies
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Relevance of variables

• not all variables are necessarily related to the underlying
information the user is interested in

• Irrelevant variables may be eliminated from the data
• supervised: subset of objects labeled by an oracle

The relevance of an input is measured by computing
correlations between the known input/output pairs
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Dependencies between variables

• Even assuming that all variables are relevant the dimension of
the observed data may still be larger than necessary

• 2 variables may be highly correlated→find a new set of
transformed vars

• The new set should contain a smaller number of variables but
preserve the interesting characteristics of the initial set

• Transformations or projections (linear, non-linear) should not
alter these characteristics

• Dependencies result from imperfection of observation process:
interesting variables not directly accessible
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Goals of projection

(1) Reduce the number of variables - dimensionality reduction,
eliminate redundancy (Example: feature selection, PCA)

(2) (more complex) Retrieve so-called latent variables that
originate from observed ones but cannot be measured directly
(for example: Blind Source Separation (BSS) in signal
processing, Independent Component Analysis (ICA) in
multivariate data analysis: latent variable separation)
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Feature selection vs. feature extraction
 
● feature selection: choose k < d important features, ignore 

the remaining d - k

● feature extraction (more general): transform the original  
                       to                        (k < d). 

Example transformations:
Linear transformations: principal component analysis
(PCA), linear discriminant analysis (LDA), factor analysis.

Some metric learning methods are similar to linear 
transformations.

● Nonlinear transformations: Self-Organizing Map (SOM), 
Multidimensional scaling (MDS), manifold embedding 
methods. Often based on assuming the data lies on a low-
dimensional manifold.

● We will encounter both kinds of methods on the course
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Feature selection
feature selection (also called variable selection): choose 
k < d important features, ignore the remaining d – k

Objectives of feature selection:
● improve prediction performance of predictors trained for 

the set of remaining features
● make predictors faster to train and use & more cost-

effective
● reduce measurement & storage requirements
● provide a better understanding of the underlying process 

that generated the data

Feature selection is needed both for supervised tasks 
(classification, regression, prediction) and for unsupervised 
tasks (density estimation, clustering, component analysis, 
visualization)
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Feature selection, cont.
● example application: microarray data analysis (e.g. 100s 

of patients, activity measured for 60000 genes). Select 
genes to be analyzed: which gene activities are good 
predictors of an illness like cancer?

● example application: classification of text documents. 
After pruning noninteresting words, we may still have a 
vocabulary of e.g. 15000 words. If we count occurrences 
of different words in a document, which words are good 
predictors of a document category like ”news”, 
”entertainment” or ”technical”?
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Part 2: Feature Part 2: Feature 
selection for selection for 
supervised taskssupervised tasks

Based on the presentation in 
Guyon and Elisseef, JMLR 2003
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Feature selection for supervised 
tasks
● We consider feature selection for prediction tasks, in 

particular classification and regression
● We focus on selecting a subset of features (alternative: 

rank all features)
● Simply ranking all features and picking the best ones in 

order is suboptimal: features may be redundant
● On the other hand, selecting a subset can leave out 

relevant (even if somewhat redundant) features
● More generally, a simple predictor may not be able to make 

use of complicated information in a feature even if it is 
relevant; best to choose features that are most useful for 
the predictor

● Two main approaches: filter methods and wrapper 
methods
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Filter methods – variable ranking 
● Simple filter methods select variables by ranking them 

with correlation coefficients – we'll come to more 
advanced filters later

● To build predictors, nested subsets with ever more 
variables of decreasing relevance are defined.

● Application example: in microarray analysis, a ranking 
criterion is used to find genes that discriminate between 
healthy and diseased patients. Proteins coded by such 
genes could be used as drugs, or as targets of drugs.
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Variable ranking, properties
● Good properties: simplicity
● The ranking is independent of the choice of the predictor
● Under some assumptions, may still be optimal for a given 

predictor (ex. using Fisher's criterion for ranking is optimal 
for Fisher's linear discriminant classifier when class 
covariances are diagonal)

● Scalable: only needs computation of n scores, sorting the 
scores

● Robust against overfitting: introduces bias but may have 
much less variance
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Variable ranking, notation
 
x = random vector value drawn from an unknown distribution
Xi = random variable corresponding to ith component of x 
Y = random variable of the outcome, realizations y 
xi = m-dim. vector, realizations of the ith variable for training 
data 
y = m-dim. vector containing target values for training data

m examples {xk, yk}, k = 1, ...m. Each example has the values 
for n input variables, xk,i , i = 1, ...n, and for one output 
variable, yk. 

Scoring function S(i) computed from the values xk,i and yk, 
k = 1, ...m. High score indicates a valuable variable; we sort 
variables in decreasing order of S(i).
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Ranking functions 1
● For continuous output variables: Pearson correlation 

coefficient
            definition                                          estimator

cov = covariance, var = variance, bar denotes mean over 
k

● Same as cosine between xi and y after substracting their 
mean

● In linear regression, square of R(i) is the fraction of 
variance (around      ) explained by a linear relation from xi 
to y. Enforces ranking according to goodness of linear fit 
from each variable.

● More precisely: if Xi and Y are jointly normal,

p( y∣x i)=N ( y ;μY+
σY
σ X i
R (i)(x i−μY ) ,(1−R (i)2)σY

2
)
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Ranking functions 2
● For continuous output variables: Pearson correlation 

coefficient
            definition                                          estimator

cov = covariance, var = variance, bar denotes mean over 
k

● R(i)2 can be extended to two-class classification: use y=-1 
and y=+1 for the two classes. 

● Resulting R(i)2 is related to Fisher's criterion 
● Also related to t-test criterion: may be used as test statistic 

to assess significance of a variable
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Ranking functions 3
● Correlation can only detect linear dependencies between 

variable and target.
● Simple alternative: make a non-linear fit of the target with 

single variables, rank by goodness of fit. 
Example: try to fit a spline curve between each input 
variable and the output variable, rank variables by the 
squared error of their spline fit.

● In classification, one can similarly rank variables by 
building a separate classifier with each single variable, 
and ranking according to performance of the classifier

● In two-class classification, the thresholded value of the 
variable (e.g. ”xi > 0.372 ?”) can be used as the 
discriminant function
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Ranking functions, example
● 50 points from a mixture of 4 Gaussians, predict vertical 

coordinate y from horizontal coordinate x

corr. 
coefficient 
R(i) = 0.64

best linear 
predictor:
y = 1.05x - 0.72

mean-squared 
prediction error: 
6.01
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Ranking functions 4
● Performance criteria in classification: classification error 

rate, more detailed measures for binary classification: 
various criteria involving false positive rate fpr and false 
negative rate fnr. 

● E.g. the receiver operating characteristics (ROC) curve 
plots (1-fpr) vs. fnr, can compute hit rate of break-even 
point where fpr=fnr, or area under the curve.

● When many variables separate classes perfectly, these 
criteria cannot distinguish which of those variables is best
–--> rank them by correlation coefficient or ”margin” 
(distance between closest different-class points)
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Ranking functions 5
● Various information-theoretic criteria exist, often based 

on mutual information between variables and the target:

p() are densities over values of the respective variables

probabilities P() can be estimated from occurrence counts. 
● Estimation becomes harder when number of possible 

values increases.
● Continuous case is hardest. Possibilities: (1) discretize the 

variables and use the discrete definition; (2) use a density 
estimator: If Gaussian density is assumed, result 
depends on correlations; nonparametric estimators 
include e.g. Parzen windows (not on this course).

definition for 
continuous 
variables 

definition 
for discrete 
variables
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Ranking functions 6
● Entropy                                               of a (discrete) 

variable Y represents its uncertainty, or the average 
amount of information gained from observing it. Often 
measured in bits.

● Mutual information means how much the uncertainty 
of Y is reduced if we know the other variable X, that is, 
how much information X provides about Y. 

I (i)=∑
x i

∑
y

P(X i=xi ,Y= y) log
P (Y= y∣X=x i)

P (Y= y)

=−∑
y

P (Y= y) logP (Y= y)

+∑
xi

P(X i=x i)∑
y

P(Y= y∣X i=xi) logP (Y= y∣X i=xi)

=H (Y )−H (Y∣X i)

−∑y
P(Y= y)log P(Y= y)
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Ranking functions, example
● 50 points from a mixture of 4 Gaussians, predict vertical 

coordinate y from horizontal coordinate x

same data as before, 
discretized 
joint probability 
distribution

mutual 
information of X 
and Y:
1.54 bits

entropy of P(X): 3.08 bits

entropy 
of P(Y): 
3.03 bits
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Ranking methods, redundancy 
● Apparently redundant-looking variables could be non-redundant

The two variables have the 45-degree rotation: average
same distribution->redundant?   of the variables->better class 

separation than either alone

The variables have same class centers but indep. noise around 
classes. Averaging reduces noise → cleaner class separation

Pictures from Guyon and Elisseef, JMLR 2003
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Ranking methods, redundancy 
● Effect of within-class correlation on redundancy?

 

Variables highly correlated within High within-class correlation,
class, correlation coincides with not along class separation
direction of class separation. direction. Variables are not
Redundant. redundant.
Perfectly correlated variables are redundant, but very highly 
correlated variables can still be complementary (non-redundant). 
Methods evaluating variables individually can't notice such 
effects.

Pictures from 
Guyon and 
Elisseef, 
JMLR 2003
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Ranking methods, redundancy 
● Using variable ranking to filter poor variables (to avoid 

overfitting to too many variables), also useful variables can 
be lost: a variable useless by itself can be useful with 
others

 
      Top-left variable is by itself         XOR (exclusive-or) problem:
      unrelated to class (same                each variable by itself is useless (same
      marginal density for class 1&2)           marginal density for both classes)         
      but together the variables give            but together they give good separation
      good separation

Pictures from Guyon and Elisseef, JMLR 2003
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Wrapper methods
● Wrapper methods assess subsets of variables according to 

their usefulness to a given predictor
● The predictor (learning machine) is used as a black box 

that scores variable subsets by their predictive power
● Wrapper methods can be easily implemented on top of off-

the-shelf predictor methods
● To use a wrapper method, define (1) how to search the 

space of feature subsets, (2) how to assess performance of 
a predictor, (3) which predictor to use.

● popular predictors include decision trees, naive Bayes 
classifiers, least-square linear predictors, and support 
vector machines

● Performance assessment often done on a validation set 
separate from the training set, to avoid overfitting
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Wrapper methods, cont.
● Wrappers are often criticized because they can need a lot 

of computation. Brute force search is NP-hard. Many 
strategies: best-first, branch-and-bound, genetic algorithms, 
simulated annealing, …

● Coarse search strategies may sometimes reduce overfitting
● We will discuss two greedy strategies, forward selection 

and backward selection

● Some embedded methods use a similar idea as wrappers 
more efficiently, by optimizing a two-part objective function: 
a goodness-of-fit term plus a penalty for a large number 
of variables

● Advantages of embedded methods: better use of available 
data (no need to split training data into a training and 
validation set); reaching a solution faster – no retraining a 
predictor from scratch for every variable subset.

● Example embedded method: decision trees
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Forward selection and 
backward selection
● There are 2d subsets of d features

● Forward selection: add the best feature at each step
● Set of features F is initially empty
● At each iteration, find the best new features 

      E( ) is some performance 
      measure

● Add x
j
 fo F if

● Hill-climbing algorithm, O(d2) complexity

● Backward selection: Start with all features and remove one 
at a time, if possible. May choose different set than forward 
selection.

● Floating search: add k, remove l
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Forward selection and backward selection 
– hypothesis space
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Forward selection and 
backward selection – example 
● Toy data set consists of 100 10-dimensional vectors from 

two classes (1 and 0)

● First two dimensions x
1

t and x
2

t: drawn from Gaussian with 

unit variance and mean of 1 or -1 for the classes 1 and 0 
respectively.

● Remaining eight dimensions: drawn from Gaussian with 
zero mean and unit variance, that is, they contain no 
information of the class.

● Optimal classifier: if x
1
+x

2
 is positive the class is 1, 

otherwise the class is 0.
● Use nearest mean classifier.
● Split data in random into training set of 30+30 items and 

validation set of 20+20 items
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Forward selection and backward 
selection – example, continued

● Optimal selection consists of features 1 and 2!
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Nested subset methods
● Nested subset methods guide search by estimating 

changes in objective function value from moves in variable 
subset space. 

● Combined with greedy search (such as backward 
elimination or forward selection) they yield nested subsets 
of variables

● Objective function J(s) for s variables, predict changes 
using:
● Finite difference calculation: compute difference 

between J(s) and J(s+1) or J(s−1) for variables to be 
added/removed. The basic forward selection/backward 
elimination algorithms on the previous slides essentially 
do this because they compare objective values 
before/after adding/removing a variable.

Sometimes exact differences can be computed without 
retraining a new models for each candidate variable.
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Nested subset methods
● Objective function J(s) for s variables, predict changes 

using:
● Quadratic approximation of the cost function: based 

on variable weights, can be used for backward selection 
by pruning variable weights. J(s) approximated by Taylor 
series approximation of J(s) with respect to the weight of 
of each variable. Allows estimation of change when 
removing a variable:                                 , removal 
means changing the weight to zero (                       ) 
where wi is current weight of variable i, Dwi is the change 
in the weight and DJi is the change in the cost

● Sensitivity of J(s): compute absolute value/square of 
the derivative of J with respect to xi or weight wi. If the 
derivative is small, the objective does not change much 
when the variable value or weight changes slightly;  
maybe the variable can be left out. 
Possible to also use leave-one-out cross-validation error.



34

Embedded methods
● Embedded methods directly optimize an objective function 

with two competing terms:
● goodness-of-fit to be maximized
● number of variables to be kept small

● Similar to objective functions with regularization penalty 
terms

● In some cases, penalties on variable weights end up 
leaving out some variables completely--> variable selection

● For example: linear predictors f (x) = w· x+b,  Lp-norm 
penalty on weights. L0-penalty = number of variables 
(nonzero weights). In some settings iteration of L1/L2 
based optimization and variable rescaling gives 
approximately the same results as L0.

● Penalty terms may correspond to priors on the model 
complexity
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Filters for subset selection
● The previous filters we talked about ranked variables by 

their separate goodness
● Possibility for subset selection: use a wrapper (or 

embedded method) with a simple linear predictor as a 
filter. Train a non-linear predictor on the selected 
variables.

● Another alternative (not on this course): information 
theoretic filtering methods like estimating the Markov 
blanket:
● The Markov blanket of a variable xi is a set of other 

variables (excluding xi) which make xi unnecessary. A 
variable eliminated by a Markov blanket remains 
unnecessary during further backward selection.
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How many features to select?
● Sometimes e.g. using performance on a validation set may 

be sufficient to give a clear picture how many features are 
needed

● Significance testing could be used to test which features 
are really needed, but dangerous: overlapping training data 
sets in cross-validation, overlapping feature sets... must be 
careful about validity of the test to avoid biases.

● Other possiblity: use a ”probe”. Introduce known fake 
variables into the data, e.g. drawn from a Gaussian or by 
shuffling data of actual variables, use them in variable 
selection. Discard any variables whose estimated goodness 
is smaller than that of the fake variables. 

● Or in forward selection, use ratio of fake to all variables as 
stopping criterion

● For some situations & models, possible to compute 
analytically rank of a probe for a given risk of accepting an 
irrelevant variable
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”Checklist” for feature selection
● If you have domain knowledge from an expert, construct 

an improved set of ”ad hoc” features with the expert's help
● If your features are not commensurate (e.g. one is 

measured in meters, another in millimeters), it may be 
useful to normalize them

● If you think your features are interdependent, expand the 
feature set: create conjunctive features (”A and B”), 
products of features, up to available resources.

● If you need to prune data variables to improve cost, speed, 
or understanding: create disjunctive features (”A or B”) or 
weighted sums of features

● If you need to assess features individually to study their 
influence or to do a first filtering: use variable ranking. 
(Useful anyway as a baseline!)

● If you don't need a predictor, you can stop here.
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”Checklist” for feature selection, cont.

● Is the data maybe ”dirty” (meaningless patterns, noisy 
outputs, wrong labels)? Detect outliers using the top-ranked 
features, check/discard outliers.

● Do you know what to try? If not, use linear prediction. Use 
forward-selection with ”probe” stopping criterion, or the l0-
norm embedded method. For comparison, using the 
feature-ranking on the previous page, construct several 
predictors using increasing feature subsets. Can you get 
equal/better performance with a smaller subset? If so, try 
non-linear prediction with that subset. 

● If ideas, time, resources, and data samples permit: 
compare several selection methods such as your ideas, 
correlation coefficients, backward selection, embedded 
methods. Use linear and nonlinear predictors. Pick the best 
approach by model selection.

● If solution stability is needed: subsample the data, redo 
the analysis for several ”bootstraps”
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Part 3: Feature Part 3: Feature 
selection for selection for 
unsupervised tasksunsupervised tasks

Based on the presentation in 
Dy and Brodley, JMLR 2004
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Feature selection for clustering 

● We consider feature selection for unsupervised tasks, in 
particular unsupervised classification and clustering

● Goal of feature selection for unsupervised learning (at 
least for clustering): find smallest feature subset that best 
uncovers “interesting natural” groupings (clusters) from 
data by the chosen criterion

● There may be multiple solutions (best subsets), any one 
will do

● Must define ”interesting” and ”natural” by criterion 
functions
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Feature selection for clustering
● We follow the wrapper approach

wrapper approach for unsupervised learning (clustering)
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Feature selection for clustering
● What does ”Interestingness” mean: two general 

approaches.
(1) same as the clustering criterion, (2) need not be the 
same
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Feature selection for clustering
● Similar concepts of redundancy and irrelevance as before

x and y are redundant:         y is irrelevant: without x
they yield the same information     it would yield just one cluster
for discriminating the clusters     and it does not help x
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Feature Selection for Clustering
● For each candidate subset, a clustering is fitted, the 

clusters and feature subset are then evaluated by a 
criterion

● Component tasks: (1) feature search, (2) clustering 
algorithm, and (3) feature subset evaluation

● Exhaustive feature search would again be intractable
● For feature search, forward selection or backward selection 

can be used; has O(d2) worst-case complexity
● For the clustering algorithm, we consider clustering by 

estimating a Gaussian mixture model with the expectation-
maximization algorithm (=maximum likelihood fitting). 
Assumes each cluster is Gaussian.
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Feature Selection for Clustering
 

● Scatter separability criterion: evaluates cluster 
separation
(parametric version below, a nonparametric one exists)

● One possible criterion:                        , the larger the better.
Invariant under nonsingular linear transformation.

● Maximum Likelihood (ML) criterion: likelihood of data 
given by the model and parameters. With Gaussian mixture 
model: ”interesting” groupings are ”natural” Gaussian groupings

=Prob. to belong to 
  cluster j
=sample mean of cluster j

=overall sample mean
=sample cov.matrix of 
  cluster j
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Feature Selection for Clustering
 

● Choosing the number of clusters: depends on 
dimensionality

2D vs. 1D have
different 
apparent
n. of clusters

● Given a dimensionality, some approaches add a penalty for 
the number of clusters to the log-likelihood, for example the 
Bayesian Information Criterion (BIC) term:  
for L free parameters and N data points.

● With no penalty ML would give each data point  its own cluster
● Begin with many of clusters and merge; or begin with 1 and 

split; choose best cluster(s) to split/merge by optimizing the 
change in the criterion

● Many other ways to find the optimal number of clusters

−L log(N )
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Feature Selection for Clustering
 

● Biases: scatter separability criterion favors high 
dimensionality: value increases monotonically with added 
dimensions (assuming identical cluster assignments)

● In particular the trace criterion favors high dimensions 
because the sum is then over more terms, even if extra 
dimensions do not separate clusters

● Maximum likelihood criterion favors low dimensionality: 
because the more features are added, the more observed 
feature values the model must generate->more (negative) 
terms in log-likelihood

● Alternative possibility: always compute likelihood with all 
features, but model the irrelevant features as independent 
of clusters. If data is scarce, also model irrelevant features 
as independent of each other.
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Feature Selection for Clustering
 

Normalizing the criterion-values by a cross-projection method:
● A typical normalization would divide criteria by the 

dimensionality, or by          , but they would not remove effect 
of growing covariance terms. Each criterion would need a 
”magic normalization function”

● Projection approach: project clusters to subspaces being 
compared. 

● Feature set S1 yields clusters C1, set S2 yields clusters C2.
CRIT = goodness criterion of a clustering on a feature set

(goodness of clustering given by one feature subset, on 
both)

● Pick the subset yielding the better normalized score (or 
smaller dimensionality if scores are equal)

● If two subsets give the same clustering they get the same 
normalized score, as desired
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Feature Selection for Clustering
 

● Example of the projection approach:

● Compares criteria in the same number of dimensions
● Assumes: clusters in new feature space should be 

consistent with the data structure in previous feature subset
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