
MTTTS17

Dimensionality Reduction 
and Visualization

Spring 2020, 5 ects credits
Jaakko Peltonen

Lecture 1: Introduction, properties of high-dim. data

1



Practical Information
● Lectures on Tuesdays 14-16 each week in Pinni B0016, from 

January 7 onward.
● No exercise sessions, instead home exercise packs, see below.
● Language: English
● You must sign up for the course using the online system. If you 

did not do this yet, contact the lecturer at jaakko.peltonen [at] 
tuni.fi .

Material: 
● course slides, additional-reading articles
● Slides originally in part by Kerstin Bunte, Francesco Corona, 

Manuel Eugster, Amaury Lendasse
● Exercise packs released later during the spring. Will contain some 

mathematical exercises, some implementation & testing of 
methods, either from scratch or using pre-existing toolboxes.

● Course homepage: https://coursepages.uta.fi/mttts17/
● A discussion area is available in Moodle
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Practical Information, cont.
Grading (note: preliminary, may change):

● Each exercise graded 0-2 (integer), 
exercise packs total graded 0-5.

● Exam on final lecture, graded 0-5.

● To pass the course, you must pass the exam (grade 1 or more) 
and pass exercise packs (grade 1 or more).

● Passing grades are kept fractional between 1 and 5 (e.g. ”3.437”)
● Final course grade 

= round(0.8 * ExamGrade + 0.2 * ExercisesGrade)
(e.g. 3.499 rounds to 3, 3.501 rounds to 4)

3



Preliminary Schedule  (may change!)
Jan 7 Lecture 1: Introduction, properties of high-dimensional data.

Jan 14 Lecture 2: Feature selection.

Jan 21 Lecture 3: Feature selection continued, and Linear dimensionality reduction.

Jan 28 Lecture on linear dimensionality reduction continued.

Feb 4 Lecture 4: Graphical excellence.

Feb 11 Lecture 5: Human perception.

Feb 18 lecture on human perception continued.

Feb 25 Lecture 6: Nonlinear dimensionality reduction, part 1.

Mar 3 continuation of lecture 6.

Mar 10 Lecture 7: Nonlinear dimensionality reduction, part 2.

Mar 17 Lecture 8: Nonlinear dimensionality reduction, part 3.

Mar 24 Lecture 9: Metric learning.

Mar 31 Lecture 10: Neighbor embedding, part 1.

Apr 7 Lecture 11: Neighbor embedding, part 2.

Apr 14 Lecture 12: Graph visualization.

Apr 21 Lectures 11-12 continued

Apr 28 Lecture 13: Dimensionality reduction for graph layout.

May 5 Recap for course material, discussion of exercise packs

May 19 Tentative date for first exam.
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A world of high-dimensional 
measurements
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Motivation – high-dimensional data

● In bioinformatics, expressions of tens of thousands of genes 
can be measured from each tissue sample.

● In social networks, each person may be associated with 
hundreds or thousands of events (tweets, likes, friendships, 
interactions etc.)

● In weather and climate prediction, multiple types of information 
(temperature, sunshine, precipitation etc.) are measured at 
each moment at thousands of stations across Europe – see 
http://eca.knmi.nl/ 

● In finance, stock markets involve changing prices of thousands 
of stocks at each moment

Our capacity to measure a phenomenon can in some cases 
exceed our capacity to analyze it (in any complex way)
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Motivation

High-dimensional data:
World is multidimensional: (bees, ants, neurons)
in technology:(computer networks, sensor arrays, etc .)

• Combination of many simple units allows complex tasks
• cheaper than creating a specific device and robust:

malfunction of a few units does not impair whole system
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Motivation

High-dimensional data:
World is multidimensional: (bees, ants, neurons)
in technology:(computer networks, sensor arrays, etc .)

• Combination of many simple units allows complex tasks
• cheaper than creating a specific device and robust:

malfunction of a few units does not impair whole system

Efficient management or understanding of all units requires taking
redundancy into account.
→ summarize smaller set with no or less redundancy:
Dimensionality Reduction (DR)

Goal: Extract information hidden in the data
Detect variables relevant for a specific task and how variables
Interact with each other→ Reformulate data with less variables
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Demonstration example
Sometimes distance information of higher-dimensional entities
can be shown on a display without errors.
3D Probability Density: x + y + z  = 1

The objects are different probability distributions (different choices x,y,z 
such that x+y+z=1).

Distances between probability distributions can be computed by
various metrics such as Minkowski distances (next slide). It turns out
the result can be illustrated on a display.
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Demonstration example

Equidistant lines with the Minkowski metric for 3D probability densities

Sometimes distance information of higher-dimensional entities
can be shown on a display without errors.
3D Probability Density: x + y + z  = 1

Distances are important for many methods later in the course. 10



Why reduce dimensionality – 
different uses

For automated use by computers:
● Saves the cost of observing the features
● Takes less memory, storage, transmission time
● Reduces subsequent computation cost
● Reduces number of parameters
● Simpler models are more robust on small datasets

For use by humans:
● More interpretable; simpler explanations
● Data visualization (structure, groups, outliers, etc) if plotted in 2 

or 3 dimensions
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This is easier
to interpret... … than this
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International Statistical Literacy Poster Competition 
2018-2019
https://iase-web.org/islp/Poster_Competition_2018-2019.php

(open to undergraduate students in university/college)

Registration up to 1st of February 2019
Submission deadline on or before 30th or March 2019
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Why are advanced methods needed for 
dimensionality reduction?
● High-dimensional data has surprising properties
● Hard to intuitively understand them
● We'll discuss many of them on this lecture

● They can also lead to poor modeling performance
● On the other hand, the high-dimensional data are ”real” and we 

want to preserve their original properties, just in a smaller 
dimensional setting where it is easier to handle them

● simple reduction would not preserve the high-dimensional 
properties well
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Applications

• Processing of sensor arrays:
radio telescopes, biomedical (electroencephalograph (EEG),
electrocardiogram (ECG)), seismography, weather forecasting

• Image processing:
digital camera (photosensitive CCD or CMOS captors)

• Multivariate data analysis:
related measurements coming from di erent sensors (e.g.ff
cars: rotation-, force-, position-, temperature sensors)

Information discovery and extraction helps to:

• understand existing data: assign class, color and rank
• infer and generalize to new data (“test” or “validation set”)
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Theoretical Motivations

• Well-known properties of 2D and 3D Euclidean spaces
change with growing dimensions: “curse of dimensionality”

• Visualization regards mainly 2 classes of data:
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Spatial data

• spatial:  drawing 1 or 2 dimensions straightforward.

3D already harder
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Spatial data

• spatial: drawing 1 or 2 dimensions straightforward.
3D already harder

(perspective still recent discovery:
paintings before Renaissance not
very di erent from Egyptian papyri)ff
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Spatial data
• spatial: drawing 1 or 2 dimensions straightforward.

3D already harder

Even today smooth, dynamic and realistic representation of 3D
world requires highly specialized chips

(landscape art from Elder Scolls V: Skyrim, Bethesda Softworks) 19



Spatial data

Higher dimensions?

• Humans attempt to understand objects same way as in 3D:
seeking distances from one point to another, distinguish far
from close, follow discontinuities like edges, corners and so on
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4D Hypersphere and Hypercube
projected onto 3D (parallels,
meridians, hypermeridians)
(@ClaudioRocchini)

Spatial data
Higher dimensions?

• Humans attempt to understand objects same way as in 3D:
seeking distances from one point to another, distinguish far
from close, follow discontinuities like edges, corners and so on
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Temporal data
• Because of time-information geometrical representation no

longer unique
• draw evolution of each variable as function of time:
• temporal representation easily generalizes to more than 3

dimensions (for example EEG)
→ harder to perceive similarities and dissimilarities
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Temporal data
• Because of time-information geometrical representation no

longer unique
• draw evolution of each variable as function of time:
• temporal representation easily generalizes to more than 3

dimensions (for example EEG)
→ harder to perceive similarities and dissimilarities
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Properties of High-dimensional Data
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Curse of dimensionality

• Term first coined by Bellman 1961:
Considering a cartesian grid of spacing 1/10 on the unit cube in
10D equals 1010  number of points.
For 20D cube number of points increases to 1020

• Bellman's interpretation:
optimizing a function over a continuous domain of a few
dozen variables by exhaustive searching a discrete space
defined by crude discretization can easily face tens of trillions
evaluations of the function

• amount of available data generally restricted to few
observations→ high-D inherently sparse

• unexpected properties
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Hypervolume of Cubes and Spheres

Volume of a Hypersphere:

corresp. circumscripted Hypercube (edges=sphere diameter)
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Ratio Cube becomes more and more spiky like

a sea urchin, while the spherical body gets smaller and smaller

For

→ nearly all high-D space is far away from the center

Hypervolume of Cubes and Spheres

Volume of a Hypersphere:

corresp. circumscripted Hypercube (edges=sphere diameter)
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Hypervolume of a Thin Shell
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Hypervolume of a Thin Shell

For increasing dimensionality the ratio tends to 1
→ the shell contains almost all the volume (Wegman 1990)
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Tail Probability of Isotropic Gaussian Distributions
Probability density function (pdf) of isotropic Gaussian distribution

Assume random vector v has zero mean
and unit variance, radius of equiprobable
contours are spherical:
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Tail Probability of Isotropic Gaussian Distributions

Surface of d-dimensional Hypersphere:

Assume r0.95 being the radius of a hypersphere that contains 95%
of the distribution:

→ r0.95        grows with increasing dimensionality, larger and larger 
radius is needed to capture 95%

solutions of r
0.95

 d 1 2 3 4 5 6

by numerical r
0.95

1.96 2.45 2.80 3.08 3.33 3.55

integration: 31



Concentration of Norms and Distances
• With growing dimensionality the contrast provided by usual

metrics decreases
• The distribution of norms in a given distribution of points

tends to concentrate→ concentration phenomenon
• Euclidean norm of iid (independent identical distributed)

random vectors behaves unexpectedly

iid random vectors distribute close to the surface of a

hypersphere
→ Euclidean distance between any two vectors is
approximately constant:
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Diagonal of a Hypercube

Hypercube [−1,1]d  and diagonal vectors v from center to a corner
(2d vectors of the form [±1, ±1, ... , ±1]T)

• the angle between a diagonal v and an Euclidean coordinate
axis e

j
=[0,...,1,...,0] is:

• The diagonals are nearly orthogonal to all coordinate axes for

large d!
• Plotting a subset of 2 coordinates on a plane can be

misleading: cluster of points lying near a diagonal will be
plotted near the origin, whereas a cluster lying near a
coordinate axis should be visible in some plot
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Curse of dimensionality and overfitting
● Many statistical models need ever more parameters when 

applied in higher dimensional spaces. E.g. Gaussian: needs 
d*d parameters in covariance matrix.

● Few data, many parameters –---> overfitting
● In overfitting, the model mistakes measurement noise for real 

effects. Parameters are adjusted to explain the noise. 
● Result: the model fits the set of training data apparently well, 

but predicts poorly for new data.
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Example: Least square polynomial regression (1D)
black dots = training data, red circles = new data
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Curse of dimensionality and overfitting
● Overfitted models fit training data well, but predict poorly for 

new data.
● In overfitting, predictions depend strongly on the choice of 

training data –--> the model has high variance over the choice 
(related to bias-variance dilemma)

● The higher the data dimensionality, the more opportunities 
for overfitting! 

● E.g. classification: if there are more dimensions than samples, 
each sample can be separated from all others along some 
dimension.

● Ever more data needed to prevent overfitting
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How to avoid the problems?

Many solutions - we'll show some of
them on the next lecture!
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