MTTTS17
Dimensionality Reduction
and Visualization

Spring 2020, 5 ects credits
Jaakko Peltonen

Lecture 1: Introduction, properties of high-dim. data



Practical Information

Lectures on Tuesdays 14-16 each week in Pinni B0016, from
January 7 onward.

No exercise sessions, instead home exercise packs, see below.
Language: English

You must sign up for the course using the online system. If you
did not do this yet, contact the lecturer at jaakko.peltonen [at]
tuni.fi .

Material:

course slides, additional-reading articles

Slides originally in part by Kerstin Bunte, Francesco Corona,
Manuel Eugster, Amaury Lendasse

Exercise packs released later during the spring. Will contain some
mathematical exercises, some implementation & testing of
methods, either from scratch or using pre-existing toolboxes.
Course homepage: https://coursepages.uta.fi/mttts17/

A discussion area is available in Moodle



Practical Information, cont.

Grading (note: preliminary, may change):

Each exercise graded 0-2 (integer),
exercise packs total graded 0-5.
Exam on final lecture, graded 0-5.

To pass the course, you must pass the exam (grade 1 or more)
and pass exercise packs (grade 1 or more).

Passing grades are kept fractional between 1 and 5 (e.g. "3.437”)
Final course grade

= round(0.8 * ExamGrade + 0.2 * ExercisesGrade)

(e.g. 3.499 rounds to 3, 3.501 rounds to 4)



Preliminary Schedule (may change!)

Jan7
Jan 14
Jan 21
Jan 28
Feb 4
Feb 11
Feb 18
Feb 25
Mar 3
Mar 10
Mar 17
Mar 24
Mar 31
Apr7
Apr 14
Apr 21
Apr 28
May 5
May 19

Lecture 1: Introduction, properties of high-dimensional data.
Lecture 2: Feature selection.

Lecture 3: Feature selection continued, and Linear dimensionality reduction.
Lecture on linear dimensionality reduction continued.
Lecture 4: Graphical excellence.

Lecture 5: Human perception.

lecture on human perception continued.

Lecture 6: Nonlinear dimensionality reduction, part 1.
continuation of lecture 6.

Lecture 7: Nonlinear dimensionality reduction, part 2.
Lecture 8: Nonlinear dimensionality reduction, part 3.
Lecture 9: Metric learning.

Lecture 10: Neighbor embedding, part 1.

Lecture 11: Neighbor embedding, part 2.

Lecture 12: Graph visualization.

Lectures 11-12 continued

Lecture 13: Dimensionality reduction for graph layout.
Recap for course material, discussion of exercise packs
Tentative date for first exam.



A world of high-dimensional
measurements



Motivation — high-dimensional data

* In bioinformatics, expressions of tens of thousands of genes
can be measured from each tissue sample.

* In social networks, each person may be associated with
hundreds or thousands of events (tweets, likes, friendships,
interactions etc.)

* In weather and climate prediction, multiple types of information
(temperature, sunshine, precipitation etc.) are measured at
each moment at thousands of stations across Europe — see
http://eca.knmi.nl/

* Infinance, stock markets involve changing prices of thousands
of stocks at each moment

Our capacity to measure a phenomenon can in some cases
exceed our capacity to analyze it (in any complex way)



Motivation

High-dimensional data:
World is multidimensional: (bees, ants, neurons)
in technology: (computer networks, sensor arrays, etc .)

* Combination of many simple units allows complex tasks
* cheaper than creating a specific device and robust:
malfunction of a few units does not impair whole system



Motivation

High-dimensional data:
World is multidimensional: (bees, ants, neurons)
in technology: (computer networks, sensor arrays, etc .)

* Combination of many simple units allows complex tasks
* cheaper than creating a specific device and robust:
malfunction of a few units does not impair whole system

Efficient management or understanding of all units requires taking
redundancy into account.

— summarize smaller set with no or less redundancy:
Dimensionality Reduction (DR)

Goal: Extract information hidden in the data
Detect variables relevant for a specific task and how variables
Interact with each other— Reformulate data with less variables



Demonstration example

Sometimes distance information of higher-dimensional entities
can be shown on a display without errors.
3D Probability Density: x+ y+z =1

The objects are different probability distributions (different choices x,y,z
such that x+y+z=1).

Distances between probability distributions can be computed by
various metrics such as Minkowski distances (next slide). It turns out
the result can be illustrated on a display.



Demonstration example

Sometimes distance information of higher-dimensional entities
can be shown on a display without errors.
3D Probability Density: x+ y +z =1

Equidistant lines with the Minkowski metric for 3D probability densities
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Distances are important for many methods later in the course.
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Why reduce dimensionality —
different uses

For automated use by computers:

* Saves the cost of observing the features

* Takes less memory, storage, transmission time

* Reduces subsequent computation cost

* Reduces number of parameters

* Simpler models are more robust on small datasets

For use by humans:

* More interpretable; simpler explanations

* Data visualization (structure, groups, outliers, etc) if plotted in 2
or 3 dimensions
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International Statistical Literacy Poster Competition
2018-2019

https://iase-web.org/islp/Poster_Competition_2018-2019.php
(open to undergraduate students in university/college)

Registration up to 1st of February 2019
Submission deadline on or before 30th or March 2019
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Why are advanced methods needed for
dimensionality reduction?

* High-dimensional data has surprising properties
* Hard to intuitively understand them
* Wel'll discuss many of them on this lecture

* They can also lead to poor modeling performance

* On the other hand, the high-dimensional data are "real” and we
want to preserve their original properties, just in a smaller
dimensional setting where it is easier to handle them

* simple reduction would not preserve the high-dimensional
properties well
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Applications

* Processing of sensor arrays:
radio telescopes, biomedical (electroencephalograph (EEG),
electrocardiogram (ECG)), seismography, weather forecasting
* Image processing:
digital camera (photosensitive CCD or CMOS captors)
* Multivariate data analysis:
related measurements coming from different sensors (e.g.
cars: rotation-, force-, position-, temperature sensors)

Information discovery and extraction helps to:

* understand existing data: assign class, color and rank
* infer and generalize to new data (“test” or “validation set”)
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Theoretical Motivations

* Well-known properties of 2D and 3D Euclidean spaces
change with growing dimensions: “curse of dimensionality”

* Visualization regards mainly 2 classes of data:
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Spatial data

* spatial: drawing 1 or 2 dimensions straightforward.
3D already harder
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Spatial data

* spatial: drawing 1 or 2 dimensions straightforward.
3D already harder

(perspective still recent discovery:
paintings before Renaissance not
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Spatial data

* spatial: drawing 1 or 2 dimensions straightforward.
3D already harder

Even today smooth, dynamic and realistic representation of 3D
world requires highly specialized chips
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Spatial data

Higher dimensions?

* Humans attempt to understand objects same way as in 3D:

seeking distances from one point to another, distinguish far

from close, follow discontinuities like edges

corners and so on

20




Spatial data

Higher dimensions?

* Humans attempt to understand objects same way as in 3D:
seeking distances from one point to another, distinguish far
from close, follow discontinuities like edges, corners and so on

4D Hypersphere and Hypercube
projected onto 3D (parallels,
meridians, hypermeridians)

(@ClaudioRocchini)
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Temporal data
* Because of time-information geometrical representation no
longer unique
* draw evolution of each variable as function of time:
* temporal representation easily generalizes to more than 3
dimensions (for example EEG)
- harder to perceive similarities and dissimilarities

22



Temporal data
* Because of time-information geometrical representation no
longer unique
* draw evolution of each variable as function of time:
* temporal representation easily generalizes to more than 3
dimensions (for example EEG)
- harder to perceive similarities and dissimilarities
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Properties of High-dimensional Data
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Curse of dimensionality

* Term first coined by Bellman 1961:
Considering a cartesian grid of spacing 1/10 on the unit cube in
10D equals 10'% number of points.
For 20D cube number of points increases to 10%°

* Bellman's interpretation:
optimizing a function over a continuous domain of a few
dozen variables by exhaustive searching a discrete space
defined by crude discretization can easily face tens of trillions
evaluations of the function

* amount of available data generally restricted to few
observations— high-D inherently sparse

* unexpected properties
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Hypervolume of Cubes and Spheres

Volume of a Hypersphere:
d
w2 rd
d
1+ 73)

corresp. circumscripted Hypercube (edges=sphere diameter)

Veube(r) = (2r)d

Vsphere(r ) —
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Hypervolume of Cubes and Spheres

Volume of a Hypersphere:
d
w2 rd
d
1+ 73)

corresp. circumscripted Hypercube (edges=sphere diameter)

Veube(r) = (2r)d
Viphere

Ratiodli_>m V.. = 0 — Cube becomes more and more spiky like
o0 cube

Vsphere(r ) —

a sea urchin, while the spherical body gets smaller and smaller
Forr = 0.5 = Veuhe = 1 = dll—>m Vsphere(r) =0

(0.9)
- nearly all high-D space is far away from the center
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Hypervolume of a Thin Shell

Vsphere(r) - Vsphere(r(]- —€))
Vsphere(r)

(e<<1)
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Hypervolume of a Thin Shell

Vsphere(r) - Vsphere(r(]- - 6)) -~ 1d - (1 - 6)d
Vsphere(r) 1d

(e<<1)

For increasing dimensionality the ratio tends to 1
— the shell contains almost all the volume (Wegman 1990)
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Tail Probability of Isotropic Gaussian Distributions
Probability density function (pdf) of isotropic Gaussian distribution

vecRY

1 1 v —pu?
p(v) = —=exp ——M iy (d-dim. mean)
(2m)¢ 2 ¢ 2 :
o< (scalar variance)
pdf(x.y,c)

Assume random vector v has zero mean
and unit variance, radius of equiprobable

@ contours are spherical:

p(v) = K(r)= \/ﬁ xp (_§>

0.1
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Tail Probability of Isotropic Gaussian Distributions

Surface of d-dimensional Hypersphere:

d
2r2rd-1

r($)

Assume rop g5 being the radius of a hypersphere that contains 95%
of the distribution:

foro'gs Ssphere(F)K (r)dr
Jo" Ssphere(r)K(r)dr

- Ig95 grows with increasing dimensionality, larger and larger
radius is needed to capture 95%
solutions of r d 1 2 3 4 5 6
by numerical r 1.96 2.45 2.80 3.08 3.33 3.55

0.95
integration: 31

Ssphere(”) =

=0.95




Concentration of Norms and Distances
* With growing dimensionality the contrast provided by usual
metrics decreases
* The distribution of norms in a given distribution of points
tends to concentrate— concentration phenomenon
* Euclidean norm of iid (independent identical distributed)
random vectors behaves unexpectedly

d
lu=vll2 = | > (uk = vi)?
k=1
d
la.=v<a,a> <uv>=u'v= Zakbk
k=1

iid random vectors distribute close to the surface of a

hypersphere
- Euclidean distance between any two vectors is

approximately constant: |im W -0
d—oo 18bmin 32



Diagonal of a Hypercube

Hypercube [-1,1]* and diagonal vectors v from center to a corner

(2%vectors of the form [£1, +1, ..., +1])
* the angle between a diagonal v and an Euclidean coordinate
axis ej=[0,...,1,...,0] is:
<v,ej > +1
cosfy = L

= 0
Vvv><e e > \/d dooo

* The diagonals are nearly orthogonal to all coordinate axes for
large d!

* Plotting a subset of 2 coordinates on a plane can be
misleading: cluster of points lying near a diagonal will be
plotted near the origin, whereas a cluster lying near a
coordinate axis should be visible in some plot
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Curse of dimensionality and overfitting

Many statistical models need ever more parameters when
applied in higher dimensional spaces. E.g. Gaussian: needs
d*d parameters in covariance matrix.

Few data, many parameters —--> overfitting

In overfitting, the model mistakes measurement noise for real
effects. Parameters are adjusted to explain the noise.

Result: the model fits the set of training data apparently well,
but predicts poorly for new data.
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Example: Least square polynomial regression (1D)

black dots = training data, red circles = new data
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Example: Least square polynomial regression (1D)

2 4 - sin(X/n)
—— degree 1 polynomial
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)

24 - sin(x/n)
—— degree 3 polynomial
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Example: Least square polynomial regression (1D)
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Curse of dimensionality and overfitting

Overfitted models fit training data well, but predict poorly for
new data.

In overfitting, predictions depend strongly on the choice of
training data —-> the model has high variance over the choice
(related to bias-variance dilemma)

The higher the data dimensionality, the more opportunities
for overfitting!

E.g. classification: if there are more dimensions than samples,
each sample can be separated from all others along some
dimension.

Ever more data needed to prevent overfitting
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How to avoid the problems?

Many solutions - we'll show some of
them on the next lecture!
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