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On this lecture:

● Setups where most of the training data comes 
from a different distribution than the test data



  

Part 1: Covariate Shift



  

Covariate shift
● Basic assumption in statistical learning: training data and test 
data are drawn from the same underlying distribution.
● Consider the setting: a set of real-valued training data pairs
 (x, y) is provided to train a model for a supervised learning 
problem (classification/regression/prediction).
● Additionally data of the form x is provided from one (or more) 
test environments where the model will be used.
● How should we predict a value of y given a value x from within 
a particular test environment?
● One simple example of covariate shift is sample selection bias: 
proportions of classes in training data are different than in future 
test data. (can be a big problem e.g. for political polls etc.)

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.



  

Covariate shift
● Three different types of covariate shift:

● Suppose we are only interested in   , then covariate shift 
in case 1 has no effect on modeling
● Case 2 means class prior probabilities change (e.g. due to 
imbalanced sampling of training data)

● Case 3 involves a more general assumption

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.
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Covariate shift
● Assume we have single training and single test set. Each 
sample x is assumed to come from one of several data sources 
using a mixture distribution corresponding to the source.

● The proportions of each of the sources varies across the 
training and test datasets. 

● Here covariate shift affects the contribution of different sources 
to the data.

● There is a latent feature set (properties within each source) 
upon which each dataset is dependent. Variations between the 
two datasets depend on variation of the proportions of those 
latent features (sources) but the form of each source stays the 
same

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.



  

Covariate shift
● Sources in set 1 may occur in the test data, and potentially also 
in the training data, and are associated with regression model 

● Sources in set 2 occur only in the training data, and are 
associated with regression model

● Set 1 has M distributions           , t=1,...,M, associated with

● Set 2 has M
2
 distributions           , t=1,...,M

2
, associated with

● Training data distribution:

● Test data distribution:

 

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.

proportions of
train vs. test 
distributions in
 training data

relative proportions in source set 1

relative proportions 
in source set 2



  

Covariate shift
● Full parametric model of observed data and latent values:

● Here     are indices of training data points,                   are the 
indices of the source-set (1 or 2) and the component within the 
source-set used to generate a training data point,            are the 
output and input values for the data point

● Here     are indices of test data points,               are the indices 
of the component within the test-source used to generate a test 
data point,          are input values for the test data point

● The parameters are the regression parameters             , mixture 
parameters             , and mixing proportions         and          . 

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.

iμ=(sμ , tμ)μ

yμ , xμ

iν=(tμ)ν
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Covariate shift
● Full parametric model of observed data and latent values:

● A parametric model like this can be optimized by the 
expectation-maximization algorithm to maximize the marginal 
likelihood of the observed data with respect to parameters

● This yields E-step:

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.

proportional responsibility of source s, 
component t for a training data point

proportional responsibility of 
component t for a test data point



  

Covariate shift
● M-step depends on the form of the mixture components. If they 
are Gaussian of the form

● then the M-step becomes

● Test data is associated with one regression model
             .. .  Predictive distribution for the test set is the learnt 
predictor                for each test sample 

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.
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Covariate shift
● Special case: importance weighted least squares
● Suppose PD and PT are known, and the source set1 contains 
just the one component  which must be PT by defnition.
● Suppose the two regressors have a large and identical variance 
Σ. In this simple case, we do not need to know the actual test 
points (they are only used to infer the test distribution, which is 
assumed given here). 
● The M step update only involves an update to the regressor
● With an assumption                                               the equations 
become

● E-step: M-step:

● Here       is a shared constant and can be dropped. No need to 
learn it or any parameters of mixture 2 at all!

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.



  

Covariate shift
● Example outcome on simple data: predict vertical from 
horizontal.  Pluses are points that become associated more to to 
mixture components of the “training-only” source set 2, dots are 
points that become associated more to to mixture components of 
the “both training and test” source set 1

● Original functions are mixtures of two linear regressors each. The learned 
functions are here cubic regressors, details not on this course; one can just as 
well use some other regressor.

Following the approach from Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate Shift. Advances in 
Neural Information Processing Systems. Images from that paper.



  

Part 2: Importance weighted 
cross-validation for covariate 

shift



  

Importance weighted cross-validation for cov. shift
● For learning a supervised predictor, empirical risk minimization 
is a standard approach:

● If the ratio of train and test densities is somehow known, we can 
do importance sampling:
if                  is known (or can be estimated from unlabeled data)  
                    we can weight losses by it to approximate loss on 
                    test data:

Following the approach from Sugiyama, M., Krauledat, M., and Muller, K-R. 2007. Covariate shift adaptation by importance 
weighted cross validation. Journal of Machine Learning Research, (8): 985-1005. Images from that paper.

loss function for 
input x, output y, 
and prediction f



  

Importance weighted cross-validation for cov. shift
● One can use an adaptive estimate (where 0<= lambda<=1 
controls risk):

● Cross-validation can be used to choose lambda, but covariate 
shift must be taken into account in the procedure:

 this simply weights validation errors by importances.
● It turns out this has good theoretical properties: gives unbiased 
estimate of risk even under covariate shift

Following the approach from Sugiyama, M., Krauledat, M., and Muller, K-R. 2007. Covariate shift adaptation by importance 
weighted cross validation. Journal of Machine Learning Research, (8): 985-1005. Images from that paper.



  

References for parts 1-2

● Daume, H., and Marcu, D. 2006. Domain adaptation for statistical classifiers. 
Journal of Artificial Intelligence Research, (26):101-126.

● S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of 
Representations for Domain Adaptation. In proceedings of NIPS 2006.

● Storkey, A. J., and Sugiyama, M. 2007. Mixture Regression for Covariate 
Shift. Advances in Neural Information Processing Systems.

● Sugiyama, M., Krauledat, M., and Muller, K-R. 2007. Covariate shift 
adaptation by importance weighted cross validation. Journal of Machine 
Learning Research, (8): 985-1005.



  

Part 3: 
Covariate Shift in Multi-task 

Settings



  

Asymmetric multi-task learning
● In covariate shift scenarios (lecture 11) the conditional 
probability of labels is assumed to stay the same between 
training and test data, but the marginal probability of inputs 
changes between training and test data.
● A typical solution was to change the weight of training samples 
x during learning, by assigning importance weights proportional 
to the density ratio                    inside the cost function of the 
task.

● To get the weights, instead of separately estimating the 
densities, one can directly try to estimate the ratio by various 
techniques (e.g. based on some labeled data, or by trying to 
match some statistics like mean, variance etc. between the 
weighted training distribution and available samples from the test  
distribution)
● Can we extend this idea to the multi-task learning scenario?

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

Asymmetric multi-task learning
● In a multi-task setting not only the joint distributions (of samples 
and labels) may differ between tasks, but also the training and 
test distribution may differ within each task.
● Usually some tasks have similar joint distributions
● Consider the following scenario: you have several tasks (with 
inputs x and outputs y) where the task is indexed by z, so that 
the conditional probability of future test inputs and outputs from 
task z is 
● An unlabeled test sample                     is 
available where inputs are known and which task they come 
from, but not the labels.
● In each task z the training data comes from a different 
distribution    than its test 
data: the marginal probability of inputs is different.
● We assume                    >0 when                   >0 (all test inputs 
can occur in training) Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by 

Distribution Matching for Targeted Advertising. In Proc. NIPS 2008.. Images from that paper.



  

Asymmetric multi-task learning
● For each task we wish to learn an input-output function 
minimizing the expected loss (e.g. a squared error, negative log-
probability of labels, or some other loss) over the distribution of 
test data:

● In targeted advertising, z might indicate one of several large 
web sites (e.g. a news or shopping portal), x might be a browsing 
profile of a user, and the task might be to predict the gender y of 
the user from the browsing profile of the user on the portal.
● For a small number of users of each portal, you might be able 
to collect the gender from users who take surveys.
● People who answer surveys are not the same as all users ---> 
the marginal distribution of labeled training data differs rom the 
distribution of all users (= test data distribution).
● We could use a covariate shift method in each task separately, 
but it would not make use of relationships between tasks.

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

Asymmetric multi-task learning
● Define an indicator variable s=1 for training data, s=-1 
for test data.
● Consider simply pooling all training data of all tasks: 
the data in the resulting pool has the distribution

● We will create a task-specific resampling weight             
 for each sample in the pool. The resampling weights 
match the pool distribution to the target distribution
● We can then rewrite

 

● We need to find weights               that satisfy the above 
Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.

expected loss over test data from 
task t

expected weighted loss over pooled training data from all tasks



  

Asymmetric multi-task learning
● It can be shown that to satisfy the equation, we get

● To show this,

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

Asymmetric multi-task learning
● The equation

has two factors: (left) proportion of joint probability in 
the correct task t compared to the overall pool, (right) 
ratio of marginal probability in test samples of task t 
versus training samples from the task.
● The remaining question is how to estimate the above 
weights: estimating all densities involved in the equation 
is overly difficult since all we need is the final weight.
● We will transform the estimation into two classification 
problems!

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

Asymmetric multi-task learning
● The equation can be rewritten as

where

is the probability that a labeled training sample (x,y,s=1) 
comes from a particular task t, and

the ratio is proportional to another 
probability:

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.

probability that an input x from 
task t is a training sample



  

Asymmetric multi-task learning
● The two probabilities and can 
each be estimated from the set of labeled training 
samples of all tasks and unlabeled test samples of all 
tasks.
● The probabilities are probabilities of labels, so 
estimating them can be done as probabilistic 
classification.
● If there are two tasks, then both probabilities are 
probabilities of binary labels -----> we can use for 
example logistic regression to estimate the probabilities.
● For example we can set where

is a mapping from
     (x,y) to features, 

      is a parameter.
Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

Asymmetric multi-task learning
● For binary labels for example

● The rest is standard logistic regression!
● Once it is done, then the rest is just weighting samples 
in standard learning as in the previous covariate shift. 

Following the approach from S. Bickel, C. Sawade, and T. Scheffer. Transfer Learning by Distribution Matching for Targeted 
Advertising. In Proc. NIPS 2008. Images from that paper.



  

References for part 3

● Steffen Bickel, Christoph Sawade, and Tobias Scheffer. Transfer Learning 
by Distribution Matching for Targeted Advertising. In Proceedings of NIPS 
2008, International Conference on Neural Information Processing Systems, 
2008.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

