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On this lecture:

● Part 1: More about Gaussian processes and 
Bayesian co-training

● Part 2: Co-training when views disagree
 (Detecting view disagreement)

● Part 3: Very briefly about semisupervised multi-
task learning

● Part 4: Self-taught learning



  

Part 1:
 

Bayesian Co-training
(in-depth explanation with more 
detail than in previous lectures)



  

Bayesian co-training
● The previous discussion on co-training did not present it as an 
integrated model of data: does not optimize a joint cost function 
for all views of all data

● There have been approaches called co-regularization that do 
optimize a joint cost function (not discussed here) but they still 
optimize one view at a time

● Bayesian co-training: an undirected graphical model for co-
training. Maximum likelihood inference for that model is related to 
co-regularization.

● We will use a nonparametric Gaussian process approach to 
model input-output functions

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Recap: Gaussian processes
● A Gaussian process is a prior over input-output functions
● A Gaussian process prior does not specify any parametric 
  family for the functions, it only specifies how output values for 
  two different input points are likely to be related.
● A Gaussian process is specified by a mean function and a 
  covariance function
● Idea: for any two input points x, x', a Gaussian process prior 
  says the output values f(x), f(x') jointly have a Gaussian 
  distribution, 
  whose mean is given by the mean function                           ,
  and covariance is given by the covariance function

● If the likelihood function is also Gaussian, then the posterior 
  distribution over the input-output functions (after seeing the 
  observations) is also a Gaussian process! 

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.

μ(x)=E [ f (x)]

k (x , x ' )=E [(f (x)−μ(x))(f (x ' )−μ(x ' ))]



  

Gaussian processes
● In Gaussian process based inference, the task is to compute 
the mean function and covariance function of the posterior 
distribution, given the prior and the observations.
● When the posterior distribution has been computed, it can be 
used to predict values of the output at new input points, as an 
expectation over the posterior.
● Gaussian process prediction gives both the prediction at the 
new point (= mean of the function value over the posterior) and 
the uncertainty about the prediction (= variance of the function 
value over the posterior)
● Gaussian process computation can be done in closed form if 
the prior and likelihood are simple.

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.



  

Gaussian Processes (GPs)
The gray line 
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mean 
function.
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deviation 
(uncertainty).

This is the 
GP prior 
over 
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seeing any 
data.

One-dimensional input values shown on the horizontal axis

Distribution
of output 
values 
(distribution
of input-
output 
functions) 
shown on 
the vertical 
axis
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Gaussian Processes (GPs)
The gray line 
shows the 
mean 
function.

The light 
gray area 
shows the 
standard 
deviation 
(uncertainty).

This is the 
GP 
posterior 
over 
functions 
after seeing 
two data 
points



  

Gaussian Processes (GPs)
After seeing 
observations, 
posterior 
uncertainty 
about the 
function 
decreases at 
observations, 
and at inputs 
correlated 
with the 
observation 
points.

(Covariance 
function tells 
how much 
each pair of 
inputs is 
correlated 
over the 
possible 
functions)
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Gaussian processes with noiseless outputs
● The prediction model is        
● Then the posterior given a data set D={(x,y)} is

● where               ,          is the covariance matrix of 
  the observed data D (evaluated by computing the covariance 
  function between all pairs of the observed data),   

           is the covariance function 
computed  between the new input point and all observed input 
points, and                          is the set of observed output values
● Similarly, the variance (uncertainty) at the new input point is 

● The noisy predictions are very similar, details on the next slide

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.

y=f (x)

p( ynew∣xnew , D)=∫f
p( ynew∣xnew , f ) p(f∣D)df

∼
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Assumes we directly 
observe the function values!



  

Gaussian processes with noisy outputs
● The prediction model with noise is                    where e is 
  independent Gaussian noise        
● Then the posterior given a data set D={(x,y)} is

● where                          ,        is the covariance 
  matrix of the observed data D (evaluated by computing the 
  covariance function between all pairs of the observed data),   

            is the covariance function 
  computed  between the new input point and all observed input 
  points, and                          is the set of observed output values
● Similarly, the variance (uncertainty) at the new input point is 

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.

y=f (x)+e

p( ynew∣xnew , D)=∫f
p( ynew∣xnew , f ) p(f∣D)df

∼
1
Z
exp(−( ynew− ŷxnew , D)

2
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2
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T
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T
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Bayesian co-training
● We have m different views, n samples, sample i denoted as

● All samples of a particular view j denoted as

● Outputs of all samples denoted as

● We will use a Gaussian process based prediction for each view. 
Each view j has an underlying function      that predicts the output 
value for the sample as             based on input features of that 
view only. The function has a Gaussian process prior:

● The label y should depend on values of all the latent functions.
 How to make this explicit in a graphical model?

● saaa
●

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.

f j(xi
( j)
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Bayesian co-training
● Idea: define a consensus function f

c
 that combines information 

from the individual functions, make the label depend on that 
alone.
● For a single sample, the joint distribution of the output value ans 
the underlying functions can be written as:

 
  where       are some potential functions (nonnegative functions 
that can be suitably normalized to yield a probability distribution)
● corresponding graphical model:

Label depends only on consensus
function

Individual functions depend on each
other only through the consensus 
function

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.

p( y , f c , f 1,… , f m)=
1
Z

Ψ( y , f c)∏
j=1

m

Ψ(f j)Ψ(f j , f c)



  

Bayesian co-training
● For n samples: let                       be the function values for the 
j:th view and and                        be the consensus function 
values. Then probability of data and latent functions factorizes 
as:

● When a GP prior is used for each function, the within-view 
potential (which defines dependencies within each view) can be 
defined as:

where          is the covariance matrix of the jth view 

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.
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Bayesian co-training
● The consensus potential  defines relationship between each 
view and the consensus function, and can be defined as

(it can be shown that this also corresponds to a Gaussian prior 
for the consensus function where the prior mean is the average 
of the individual functions.)

● The output potential describes relationship between the 
consensus function and the output, and can be defined as

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training
● The previous likelihood assumed all samples have labels. 
When some samples are unlabeled (     labeled samples,      
unlabeled samples), the likelihood becomes:

(where output potentials computed only for labeled samples, but 
within-view functions&potentials and consensus 
function&potential computed for all samples)

● Inference: the standard task is to predict labels, that is, compute
          for a new input given training data

● Try to integrate out some of the functions

● Inference proceeds from there, more information on next lecture 

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training
● Idea 1: try to integrate out the consensus function. It can be 
shown

● This means the functions together have a GP prior
where the inverse covariance has a 
block structure: given two tasks j, j'

 and for regression the joint probability with output labels is

● Inference could proceed from there but would need to infer a lot 
of functions. 

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training
● Idea 2: try to integrate out the individual functions, so that the 
consensus function remains. It can be shown its marginal is

  
  
where  is called the co-training kernel

● the multi-view learning task essentially becomes a single-view 
learning task where only one function is learned

● Because of the matrix inverse, each element in the resulting co-
training kernel depends on all elements of the original kernel 
values of each view (between all labeled and unlabeled samples)

● Thus Bayesian co-training is equivalent to single-view learning 
with a specially designed (non-stationary) kernel.
● The co-training kernel depends only on inputs, not labels, and 
can be computed over both labeled+unlabeled samples

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Reminder: Gaussian processes
● If the prediction model is noise-free,        ,
● Then the posterior given a data set D={(x,y)} is

● where        ,         is the covariance matrix of the  
  observed data D (evaluated by computing the covariance 
  function between all pairs of the observed data),   

  is the covariance function computed 
 between the new input point and all observed input points, and 

is the set of observed output values
● Similarly, the variance (uncertainty) at the new input point is 

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.
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Bayesian co-training
● The standard GP inference on the previous slide can be used to 
predict function values given the observations. The equations are 
the same, but the kernel is now the co-training kernel.
● Note! The co-training kernel involves matrix inverses. It cannot 
be computed element-by-element separately: it can only be 
computed as part of a full-sized square matrix.
● This means that the kernel elements for the training samples 
depend on what new data will be available!
● This co-training can only be used in a transductive setting, 
where input values are known both for old and test samples 
during training, and the task is to predict the unknown test labels 
● Thus we first compute a big kernel       over all data (test, 
labeled training, unlabeled training).
● Then      is obtained by leaving out rows&columns of 
corresponding to test+unlabeled training samples. Similarly
is obtained by leaving out all terms except new-to-old crossterms

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.

K D
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Bayesian co-training
●  Thus we first compute a big kernel       over all data (test, 
labeled training, unlabeled training).
● Then      is obtained by leaving out rows&columns of 
corresponding to test+unlabeled training samples. Similarly
is obtained by leaving out all terms except new-to-old crossterms
● Then we apply the standard GP inference equations

● Hyperparameters: each view has a hyperparameters      which 
tells how much the view can deviate from the consensus
● The hyperparameters can be optimized to maximize the 
marginal likelihood of data given the hyperparameters: given a 
vector       of output values, their marginal likelihood is

where and the likelihood can be 
optimized by gradient methods with respect to hyperparameters 

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.

k x ,D



  

Bayesian co-training - when does it work?
● Example result 1 on artificial data (horizontal + vertical direction 
are the two views):
   

On this data co-training assumptions are satisfied and both 
classical and Bayesian co-training succeed

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training - when does it work?
● Example result on artificial data 2 (horizontal + vertical direction 
are the two views):
  

On this data the vertical direction is not sufficient for good classification 
(contradicts classical co-training assumption; labels added to 
unlabeled points based on vertical direction will be noise), but 
Bayesian co-training still works since it can penalize the weight of the 
vertical direction.

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training - when does it work?
● Example result on artificial data 3 (horizontal + vertical direction 
are the two views):
  

On this data neither view is sufficient by itself, and even Bayesian 
co-training fails. The consensus-based co-training kernel works 
poorly for this kind of data.

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Bayesian co-training
● Example result: citeseer data (scientific papers in 6 classes; 
predict if paper belongs to largest class or not). Three views of 
the papers: (1) text of the paper itself, (2) text of citations 
(inbound links) to the paper, (3) text of citations from the paper to 
others (outbound links).

● Performance measured by information retrieval criteria (AUC 
and F1 are different combinations of “precision” and “recall”,  
higher values are better)

Following the approach from Shipeng Yu, Balaji Krishnapuram, Romer Rosales, Harald Steck, R. Bharat Rao. Bayesian Co-Training. Journal of Machine 
Learning Research 12:2649-2680, 2011.  Images from that paper.



  

Part 2: Multi-view learning with 
disagreeing views



  

Multi-view learning with view disagreement
● Multi-view approaches such as canonical correlation analysis 
assume the views agree (they describe the same data, and have 
some subspace that is well correlated)
● Real domains may have view disagreement: samples in each 
view do not belong to the same class e.g. due to corruption or 
other noise
● If disagreeing samples can be detected and left out, multi-view 
learning can be applied with the remaining samples
  

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement
● Multi-view approaches such as canonical correlation analysis 
assume the views agree (they describe the same data, and have 
some subspace that is well correlated)
● Real domains may have view disagreement: samples in each 
view do not belong to the same class e.g. due to corruption or 
other noise
● If disagreeing samples can be detected and left out, multi-view 
learning can be applied with the remaining samples
  

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Two-view problem with normally distributed classes.
● 2  foreground classes (red+blue), 1 background class (black) of 
  corrupted samples. 
● Each point in view 1 corresponds to a point in view 2.

If views (data point classes) agree, the two views are redundant.
Disagreement may occur because of incorrect pairing of views.
Multi-view learning with these pairings leads to corrupted 
foreground class models.
  

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Multi-view learning methods assume views will agree, e.g. their 
cost functions may penalize disagreement between view-specific 
predictors with forms like

● If paired samples from each view in reality belong to different 
classes, views disagree about the sample.

● Idea: assume there is a background class that can co-occur 
with  (be paired to) any foreground class; each foreground class 
is only paired to itself or the background class

● Example: audio vs video. People may say “yes” without 
nodding, or nod without saying “yes”.

● Idea: model the background class, detect view disagreement

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Use a conditional entropy criterion to detect disagreeing 
samples. 
● Idea: given a fixed location in one view, how much uncertainty 
is there about the location in the other view? 
● If there is much uncertainty, the views are likely to disagree 
about this sample (the fixed location is likely to be a “background 
sample”)
● Conditional entropy of location in view i given location in view j:

illustration of the
conditional 
entropy idea 

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Detect foreground samples: check if the conditional entropyof 
view i given view j for that sample is below the average value 
between those views:

where (U, Ui are 
the sets of
possible values)

● A sample is a redundant foreground sample (good!) if all views 
confidently predict each other's locations:

● A sample is a redundant background sample (ok) if all views are 
uncertain about each other's locations

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● A sample k is a redundant foreground sample (good!) if all 
views confidently predict each other's locations:

● A sample k is a redundant background sample (ok) if all views 
are uncertain about each other's locations

● Otherwise the views disagree about the sample. Two particular 
views disagree if the xor operator is 1 (one view is confident, the 
other is not):

● In practice estimate probabilities by
  where f are multivariate kernel density 
  estimators

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Revised co-training algorithm with view disagreement:

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.



  

Multi-view learning with view disagreement, example
● Toy example with varying amount of view disagreement:

Following the approach from Christoudias, M., Urtasun, R., and Darrell, T. 2008. Multi-View Learning in the Presence of View 
Disagreement. 9 pp., In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2008). Images from that paper.
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Part 3: Semi-supervised multi-
task learning



  

Semisupervised multi-task learning, introduction
● The overall idea is:

1. define a semisupervised single-task classifier

the classifier will be defined based on a graph of data 
sample similarities, and unlabeled samples will affect the 
learning through the graph

2. define several such classifiers, and make the learning of 
    their parameters depend on each other through a joint prior

the prior could be e.g. a Dirichlet process type prior, 
allowing there to be as many clusters of similar tasks as 
needed 

Following the approach from Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask learning. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 31(6):1074-1086, 2009. Images from that paper.



  

Semisupervised multi-task learning, introduction
● 1. define a semisupervised single-task classifier

the classifier will be defined based on a graph of data 
sample similarities, and unlabeled samples will affect the 
learning through the graph

● Example: consider a kernel-based classifier, such as a 
Gaussian process where the covariance function is a kernel.
● Consider a kernel based on distances: k(x,x')=exp(-a*d2(x,x')) 
● Now define a graph that connects K-nearest neighbors of all 
points in the data set (labeled and unlabeled), and define 
distances as distances along the graph. 
● For faraway points this distance takes into account the “shape” 
of the data, which is learned mostly from the unlabeled points.
● Learning the classifier can be done as normal, using this new 
kernel

Following the approach from Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask learning. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 31(6):1074-1086, 2009. Images from that paper.



  

Semisupervised multi-task learning, introduction
● The overall idea is:

1. define a semisupervised single-task classifier - DONE

2. define several such classifiers, and make the learning of 
    their parameters depend on each other through a joint prior

In the case of a Gaussian process classifier, the prior can 
be e.g. over the parameters of the kernel, such as an 
overall scale “a”; or the prior could be over parameters of 
the graph such as how many neighbors are connected, 
and so on. 

See lecture “Multitask learning with task clustering or 
gating “ for a wide variety of priors that can be applied over 
the parameters.

Following the approach from Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask learning. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 31(6):1074-1086, 2009. Images from that paper.



  

Part 4: “Self-taught learning”



  

Following the approach from R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In 
proceedings of ICML 2007, the 24th International Conference on Machine Learning, pages 759-766, ACM, 2007. Images from that paper.

Self-taught learning
● The previous multitask unsupervised learning approach still 
essentially assumed that the unlabeled data within each task 
came from the same distribution as the labeled data
● Can we do multi-task learning (or transfer learning) without this 
assumption?
● For example, suppose plan to do classification of image, e.g. 
classifying animal images - is the animal in the image an 
elephant or a rhino.
● It would be difficult to gather unlabeled images of 
elephants&rhinos - if you know it is an elephant or rhino, that 
already means you are likely to know the label!
● Can we improve the classification using some random 
unlabeled images downloaded from the internet?



  

Following the approach from R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In 
proceedings of ICML 2007, the 24th International Conference on Machine Learning, pages 759-766, ACM, 2007. Images from that paper.

Self-taught learning
● Such data comes mostly from outside the problem domain - the 
probably most random images from the internet won't be about 
elephants or rhinos
● But they may still contain some of the same feature properties 
that are useful for elephants and rhinos too!
● That is: the problem we are solving (and its data) may come 
from a larger problem domain where some of the same 
features are likely to be useful across many problems (and their 
data)
● For example images of rhinos & elephants are part of the larger 
class of “ images of animals”, which are part of the larger class of 
“natural images”, which are part of the larger class of “images”.
● Thus, features useful for solving classification problems may be 
shared between “images or rhinos & elephants” and other 
“natural images”



  

Following the approach from R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In 
proceedings of ICML 2007, the 24th International Conference on Machine Learning, pages 759-766, ACM, 2007. Images from that paper.

Self-taught learning
● Idea: given a task T of interest unlabeled data from a larger 
problem domain can be used to learn which data features are 
noise, and which features contain trends and statistical structure 
(such features can be useful in classification problems!)
● For example, in images, any natural images will contain some 
of the same basic features like corners, edges similar to those in 
elephants and rhinos.
● This is different from normal semisupervised learning: This kind 
of unlabeled data does not share the same class labels or the 
generative distribution of the labeled data as in task T
● Thus the unlabeled data generally cannot be reasonably 
assigned to the class labels of task T (it is not reasonable to try to 
classify whether a picture of a tree is more like an elephant or a 
rhino)



  

Following the approach from R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In 
proceedings of ICML 2007, the 24th International Conference on Machine Learning, pages 759-766, ACM, 2007. Images from that paper.

Self-taught learning
● Supervised classification 
  uses labeled examples of 
  each class of interest

● Semi-supervised learning 
  uses also unlabeled 
  examples of those classes

● Transfer learning uses
   labeled datasets of 
   different classes

● Self-taught learning just 
  needs additional 
  unlabeled images



  

Following the approach from R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In 
proceedings of ICML 2007, the 24th International Conference on Machine Learning, pages 759-766, ACM, 2007. Images from that paper.

Self-taught learning
● How to learn from lots of unlabeled images?
● For example, apply some fully unsupervised statistical model  to 
learn which features are meaningful over the collection of all 
images

● Like principal component analysis
● Or some sparse feature extraction method like this:

(tries to reconstruct data coordinates as linear 
combinations, with weights        ,  of a small number of 
basis vectors       )

● The learn the individual tasks using those features, and the 
data (labeled and unlabeled images) from that task ---> reduces 
to the earlier methods



  

References for parts 3 and 4

● Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask 
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 
31(6):1074-1086, 2009.

● R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: 
transfer learning from unlabeled data. In proceedings of ICML 2007, the 
24th International Conference on Machine Learning, pages 759-766, ACM, 
2007.

● P. S. Dhillon, S. Sellamanickam, S. K. Selvaraj. Semi-supervised multi-task 
learning of structured prediction models for web information extraction, 
CIKM 2011


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

