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On this lecture:

● Multi-task learning methods that use a “kernel 
  trick” to create nonlinear regression / 
  classification methods

● Multi-task learning methods that do not require 
  the predictor /classifier to come from a simple 
  parametric family



  

Part 1: Nonlinear Multitask 
learning with a “kernel trick”



  

Multitask learning with a kernel trick, intro
● On lecture 4 we saw how canonical correlation analysis could 
  be done in a nonlinear way by a “kernel trick”
● The idea was: transform the data with nonlinear 
  transformations into a new space, and perform linear canonical 
  correlation analysis in that space
● Instead of needing to know a parametric transformation into the 
  new space, it was possible to perform all calculations using only
  an inner product or “kernel” defined between data vectors.
● A kernel is essentially a similarity measure
● Simple kernel between two vectors: traditional inner product.
  Corresponds to no transformation.
● Many other possible kernels, for example Gaussian function
● Each kernel corresponds to an inner product after an (unknown)
  nonlinear transformation. It is enough to know the kernel.
● We now follow a similar approach to multi-task learning.

● Multi-task learning (MTL):
  use a shared intermediate
  representation: share the
  intermediate layers!
● Becomes a single ANN with
  multiple outputs in the output
  layer (one per task)
● Training is done in parallel for all tasks



  

Multitask learning with a kernel trick, intro
● Task relationships have modeled by assuming that error terms 
(noise) in different regression tasks are correlated
● Extensions of various regularization methods (priors) to multi-  
task learning have been proposed
● Relations between tasks have been modeled as post–
  processing after learning
● The paper of Evgeniou et al. claims it does not “follow a 
  Bayesian or a statistical approach” but instead a regularization 
  approach 
● In practice this can be seen as a particular kind of model and 
  prior

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, single-task case
● Single-task learning notation:
  data set                                                
  where        denotes                  ,        is usually part of         and
        is             for binary classification
● Task: learn a function       to get small expected error
  where L is a loss function such as squared error
● Learn parameters to minimize loss + regularization:

   where          is the norm of       in a space       of functions
● The solution has the form:

   so the task is to find the weights 

regularization
parameter

(the fact that this 
happens is called 
the “representer 
theorem”)

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, single-task case
● Statistical interpretation:  

●     defines a regression model,
● squared error corresponds to log-likelihood of Gaussian noise

around predicted outputs,
●           is log-probability of      in a prior distribution 
● minimization = finding the maximum a posteriori model fit 

(maximizing posterior probability given data)

● Now we treat the multi-task setting with a similar setup

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, linear case
● Multi-task learning notation:
  n tasks, each task l comes with m examples . 
  All data together marked as 
● Assume the tasks have a common input space,
● For each task, learn a function 
● At first we will assume the functions are linear,
● Minimize a loss term + regularization term:

   where the regularization term is over parameters u of all tasks
● Statistical interpretation: similar to the single-task case, but 
  now there is a model for each task, and the prior is a joint prior
  (log-likelihood from a joint distribution) for parameters of all *
  tasks

regularization term

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, linear case
● Form of the prior: collect parameters of all tasks into a long 
  vector                                          and set 
  where E is a matrix that represents known relationships 
  between tasks. We assume E is symmetric and positive definite.
● In the case where E is diagonal the learning reduces to the 
  single-task case, each task is learned independently
  (for example when E is an identity matrix,                               
  which has separate terms for each task)
● For a suitable choice of E the regularization becomes
                                    which forces all tasks to use similar 

 parameters.
● Assume the input-output functions are of the form
                              so that                       where w is common to all
  tasks
● Denote the concatenation of the feature matrices by

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, linear case
● We wish to convert the loss function+regularization to a form

  where the regularization (prior) term does not contain a task 
  relationship matrix
● It turn out this is possible. If we know B and set                      , 
  then the new form is related to the old form by    .
  (or if we know E and set                  )
● Because the multi-task case is now in a similar form as the 
  single-task case, the representer theorem applies and the 
  solution has the form

● This form of w can be inserted to the previous equations to 
  solve the task functions

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.

weights to be solved



  

Multitask learning with a kernel trick, linear case
● The optimal function of each task q has the form

 where the kernel function is a kernel between any two samples 
  (x and t)  from any two tasks (x from task l, t from task q) : 

● This kernel is a linear multi-task kernel
● The kernel is computes based both on the input features of the 
  two samples, and which tasks they come from
● When the kernel is known, the optimal functions can be 
  found by minimizing the loss+regularized with respect to 
  the weights (for example by gradient descent, or by more 
  advanced methods if the equations have a suitable form)

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, linear case
● Different choices of the kernel lead to different learning 
  problems

● The regularizer   where
  is a positive definite matrix

  corresponds to the kernel . It emphasizes
  similarity of tasks l, q by weight

● The kernel
  corresponds to the regularizer

  which has a trade-off (controlled by     ) between keeping 
  parameters of individual tasks small, and keeping parameters of
  each task similar to the average parameter value over tasks.

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, linear case
● Task-clustering regularizer:

   where k indexes the c tasks,                               are cluster 
   probabilities, corresponds to 

 where

 The corresponding kernel is

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, nonlinear case
● The previous kernels can be used with nonlinear relationships, 
just replace x't with a nonlinear similarity function like exp(-||x-t||2)
● Generally: for each task l we use nonlinear functions of the form
  
   where           is a task-dependent nonlinear transformation and 
   w creates a linear projection to the output. 
● We again minimize a sum of losses+regularization

● By the representer theorem the solution again has the form

  where the kernel is 

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Multitask learning with a kernel trick, nonlinear case
● It turns out that 
  where          and           are some task-dependent 
  transformations, is a valid multi-task kernel.
● For example, when G is Gaussian and transformations are 
  linear, this becomes

  where       and       are task-dependent transformations

Following the approach from T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning Multiple Tasks with Kernel Methods. 
Journal of Machine Learning Research 6: 615-637, 2005. Images from that paper.



  

Part 2: Nonlinear Multitask 
learning with nonparametric 

methods



  

Multitask learning with nonparametric methods
● Most methods restrict input-output functions to a particular 
  parametric family
● Even kernel methods use a parametric family: typically linear 
  projection after a nonlinear transformation.
● Can we built multi-task methods that do not require a 
parametric
  family? Yes.
● Here we consider multi-task learning with nonparametric 
  methods, in particular with Gaussian processes

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.



  

Multitask learning with nonparametric methods
● A Gaussian process is a prior over input-output functions
● A Gaussian process prior does not specify any parametric 
  family for the functions, it only specifies how output values for 
  two different input points are likely to be related.
● A Gaussian process is specified by a mean function and a 
  covariance function
● Idea: for any two input points x, x', a Gaussian process prior 
  says the output values f(x), f(x') jointly have a Gaussian 
  distribution, 
  whose mean is given by the mean function                           ,
  and covariance is given by the covariance function

● If the likelihood function is also Gaussian, then the posterior 
  distribution over the input-output functions (after seeing the 
  observations) is also a Gaussian process! 

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.

μ(x)=E [ f (x)]

k (x , x ' )=E [(f (x)−μ(x))(f (x ' )−μ(x ' ))]



  

Multitask learning with nonparametric methods
● In Gaussian process based inference, the task is to compute 
the mean function and covariance function of the posterior 
distribution, given the prior and the observations.
● When the posterior distribution has been computed, it can be 
used to predict values of the output at new input points, as an 
expectation over the posterior.
● Gaussian process prediction gives both the prediction at the 
new point (= mean of the function value over the posterior) and 
the uncertainty about the prediction (= variance of the function 
value over the posterior)
● Gaussian process computation can be done in closed form if 
the prior and likelihood are simple.

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.



  

Multitask learning with nonparametric methods
● If the prediction model is noise-free,        ,
● Then the posterior given a data set D={(x,y)} is

● where        ,         is the covariance matrix of the  
  observed data D (evaluated by computing the covariance 
  function between all pairs of the observed data),   

  is the covariance function computed 
 between the new input point and all observed input points, and 

is the set of observed output values
● Similarly, the variance (uncertainty) at the new input point is 

● The noisy predictions are slightly more complicated, details 
  added later

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.
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Gaussian Processes (GPs)
The gray 
line shows 
the mean 
function.

The light 
gray area 
shows the 
standard 
deviation 
(uncertainty
).

This is the 
GP prior 
over 
functions 
before 
seeing any 
data. One-dimensional input values shown on the horizontal axis

Distribution 
of output 
values 
(distribution 
of input-
output 
functions) 
shown on 
the vertical 
axis
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Gaussian Processes (GPs)
After seeing 
observations, 
posterior 
uncertainty 
about the 
function 
decreases at 
observations, 
and at inputs 
correlated with 
the 
observation 
points.

(Covariance 
function tells 
how much each 
pair of inputs is 
correlated over 
the possible 
functions)
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Multitask learning with nonparametric methods
● Multitask case: create the covariance function between input points 
from two tasks l and k, to depend on the task as well as the input 
location

● The resulting equation for posterior prediction at a new point  
  becomes

● Hyperparameters can be learned by maximizing the likelihood 
(probability of observations and parameters)

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.

kernel between input locationskernel between task identifiers

Kronecker product

observed output 
values



  

Multitask learning with nonparametric methods
● Example: school data. 
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-
support/datasets.shtml. 
● Examination records from 139 secondary schools in years 
1985, 1986 and 1987. A random 50% sample with 15362 
students. 
● Task: predict  exam score of a student belonging to a specific 
school, based on four student-dependent features (year of the 
exam, gender, VR band and ethnic group) and four school-
dependent features (percentage of students eligible
for free school meals, percentage of students in VR band 1 , 
school gender and school denomination).
● Result:

Following the approach from Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple 
Tasks. In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), 2005.. Images from that paper.
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