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On this lecture:

● Probabilistic canonical correlation analysis

● Nonlinear canonical correlation analysis through 
  a “kernel trick”

● Variants of canonical correlation analysis
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Canonical Correlation Analysis, recap

Reminder: CCA finds projections of two simultaneously 
observed data sources (two feature sets for the same 
samples) so that the projections are maximally correlated.

Used in many tasks and data domains.
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Canonical Correlation Analysis, recap

● For x, find a projection w
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● Find the projection bases by maximizing the correlation between 
  the projections: maximize

  with respect to w
x
 and w

y
.

● For a finite data set: maximize the sample correlation

corr (w x
T x ,w y

T y)=
E [wx

T x w y
T y ]

(E [(w x
T x)2]E [(w y

T y)2])1/2
This definition assumes x 
and y are zero-mean, 
otherwise substract the 
means as in the original 
correlation definition.

^corr (wx
T x ,w y
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^EML [w x

T xw y
T y ]

( ^EML [(w x
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1
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xi y i

Same definition 
as before
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Canonical Correlation Analysis, recap

● CCA can be solved as a generalized eigenvalue equation

● This is a generalized eigenvalue equation which we can solve to get
   w

x
 , and the previous equation then gives w

y  
 from w

x
. 

^C x , y Ĉ y
−1 ^C y , xw x=λ

2 Ĉ xw x

w y=(1/ λ)
^
C y

−1 ^C y , xwx
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Part 1: Probabilistic Canonical 
Correlation Analysis



9

Canonical Correlation Analysis, recap

Reminder: CCA finds projections of two simultaneously 
observed data sources (two feature sets for the same 
samples) so that the projections are maximally correlated.

Used in many tasks and data domains.
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Canonical Correlation Analysis, recap

●  CCA can be solved as a generalized eigenvalue equation

●  This is a generalized eigenvalue equation which we can solve to get
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CCA, probabilistic interpretation, motivation
●  Probabilistic models are descriptions of data distributions 

  (underlying observed data sets)
●  Properties that are strongly connected to a probabilistic model are 

  motivated by the properties of that model (if the model is a good   
 model for data, then the properties involved in the model are likely 
to 
  be useful). 

●  Additionally, probabilistic models can be estimated and analyzed in 
  many ways (using all tools of probability theory) 

●  ------> it is useful to connect the things we compute from data to 
  probabilistic models.

●  Can CCA be seen as a probabilistic model for the distribution of 
  data in some data set? Yes!

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

●  Principal component analysis (PCA) has been shown to be the 
  same as maximum likelihood fitting of a probabilistic model: 
● Assume        are IID observations of random 

vectors, where                                 is an individual vector.
● Sample mean and covariance matrix:

●  PCA tries to find a linear transformation                  to find 
 orthogonal directions of largest variance. Projecting data onto 
principal components makes data features uncorrelated.

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

● PCA solution for d components: where     is the 
diagonal matrix of largest eigenvalues,     is the matrix of the 
corresponding eigenvectors, and R is any rotation matrix

● Interpreting the PCA solution: consider maximum likelihood fitting 
of the following probabilistic model to observations

where the parameters are      ,      , and     . This model says data 
are first distributed along latent axes z, and then noise is 
independently added to all coordinates.

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

●  It can be shown the maximum likelihood solution to 
  the model fitting is    ,            , and
  where     is the diagonal matrix of largest eigenvalues,
       is the matrix of the corresponding eigenvectors, and R is any 
  rotation matrix.

●  Given an observation x, the expected value of the latent variable z 
  can be computed from the model as

●  Same subspace as in PCA; same projections if left-out eigenvalues 

  are zero

●  We will build a probabilistic interpretation for CCA with a similar 
  approach as above

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

●  We now show that the CCA directions can also be solved by fitting 
a simple generative model to the data:

The model says: there is a single (vector-valued) latent variable z 
which generates both       and 

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

●  Model equations: 

latent variable is normally distributed with p uncorrelated dimensions

   
first observed variable is a projection of the latent variable, with added normally 
distributed noise (full noise covariance matrix)

      
second observed variable is another projection of the latent variable, with added  

normally distributed noise (full noise covariance matrix)
 

●  Intuitively, this model makes sense. Next, let's show it really gives 
the same solution as CCA

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation
Normal CCA solution with slightly different notation:

● CCA notation: given feature sets      and      of samples, with 
  dimensionalities       and      , find a projection (linear transformation)
  for each feature set
● Find the projections such that one component within each set of 
  transformed variables is correlated with a single component in the 
  other set.
● CCA reduces the correlation matrix to a 
  block-diagonal matrix, where each block has the form
  (padded with zeros if the dimensionalities are unequal)
  and the     are the canonical correlations; at most p=min(      ,     ) 
  nonzero canonical correlations.
● Denote the sample covariance matrix as

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.

covariance among 
1st feature set

covariance among 
2nd feature set

cross-covariance
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CCA, probabilistic interpretation

● Then the CCA solution is the set of canonical pairs of projection 
   vectors               , where
   and   are pairs of left and right singular vectors of the matrix
                                           and the corresponding singular value is

the canonical correlation      for
and zero otherwise

● If all canonical correlations have different values, the singular 
  vectors have a unique solution.
● Assume the sample covariance matrix is invertible, and denote
                                  and   . Then

●  projecting the 1st feature set to its projection directions makes the 
projected features uncorrelated

●  projecting the 2nd  feature set to its projection directions makes the 
projected features uncorrelated

●  projecting the features makes the cross-correlations diagonal (P = diagonal matrix 
of the canonical correlations)

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● The CCA directions and corresponding canonical correlations can 
  also be obtained from a generalized eigenvalue problem:

● Next we show that the CCA directions can also be solved by fitting 
the previously described simple generative model to the data:

The model says: there is a single (vector-valued) 
latent variable z which generates both 

and

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● Here are the model equations again: 

latent variable is normally distributed with p uncorrelated dimensions

   
first observed variable is a projection of the latent variable, with added normally 
distributed noise (full noise covariance matrix)

      
second observed variable is another projection of the latent variable, with added  
normally distributed noise (full noise covariance matrix)

 

● It can be shown where                        are
  the maximum arbitrary matrices (with
  likelihood solution spectral norms < 1) such
  is that  . 

Columns of         ,           have       
                the first d canonical directions,       has 

the corresponding canonical 
correlations

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● Given observations of       and/or       , we can use the model to 
predict the latent variable (mean and variance):

● The expectation of z given      (or     ) projects      (or     ) into the 
   same subspace as in CCA

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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Part 2: Nonlinear Canonical 
Correlation Analysis
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Nonlinear CCA by a “kernel trick”

● Suppose we had applied some known nonlinear transformation f
1
(  )

  from       to a new feature space, and a known nonlinear 
  transformation f

2
(   ) from       to a new feature space. Then we 

  could apply CCA to the transformed data. This would give us 
  projections of the transformed data to canonical directions computed
  from the transformed data. The projections would be nonlinearly 
  related to the original inputs       and       .
● The above is possible if we use a transformation function with a 
  known mathematical form.
● Sometimes, instead of specifying a transformation function, it is 
  easier to specify a similarity measure (inner product) between 
  samples in both feature spaces and across spaces.

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.
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Nonlinear CCA by a “kernel trick”
● For convenience denote the transformation function by       for the 
  first view and      for the second. Then the covariance matrices and   
  cross-covariance matrix of transformed data are

● If the data are already centered in the feature space (more on this 
  later) this becomes

estimated as

● We wish to find projections w
1
, w

2
 to maximize               under 

  constraint that                  and        , without knowing        ,

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.

Φ1
Φ2

Σ11=E [(Φ1(x1)−μ1)(Φ1(x1)−μ1)
T
]

Σ12=E [(Φ1(x1)−μ1)(Φ2(x2)−μ2)
T
]

Σ22=E [(Φ2(x2)−μ2)(Φ2(x2)−μ2)
T
]

Σ11=E [Φ1(x1)Φ1(x1)
T
]

Σ12=E [Φ1(x1)Φ2(x2)
T
]

Σ22=E [Φ2(x2)Φ2(x2)
T
]

Σ12=
1
M∑i

Φ1(x1i)Φ2(x2i)
T

Φ1 Φ2
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Nonlinear CCA by a “kernel trick”
● The optimal projection vectors will have this form: 

(where the alpha and beta are 
     some multipliers to be solved)

● The term to be maximized, and the constraint terms, then become

● Denote kernel matrices K
1
, K

2
 with entries 

● Then the task is to maximize                  with constraints

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.

w1=∑
i=1

M

αiΦ1(x1 i) , w2=∑
i=1

M

βiΦ2(x2 i)

w1
T
Σ12w2=(∑

i=1

M

αiΦ1(x1 i)
T
)(
1
M∑

k=1

M

Φ1(x1k)Φ2(x2k)
T
)(∑
l=1

M

βlΦ2(x2l)
T
)

=
1
M∑

i=1

M

∑
l=1

M

αi∑
k=1

M

(Φ1(x1i)
T
Φ1(x1k))(Φ2(x2k)

T
Φ2(x2 l)

T
)βl

w1
T
Σ11w1=

1
M∑

i=1

M

∑
l=1

M

αi∑
k=1

M

(Φ1(x1 i)
T
Φ1(x1 k))(Φ1(x1 k)

T
Φ1(x1l)

T
)αl

w2
T
Σ22w2=

1
M∑

i=1

M

∑
l=1

M

βi∑
k=1

M

(Φ2(x2 i)
T
Φ2(x2 k))(Φ2(x2k)

T
Φ2(x2l)

T
)βl

(K 1)ij=Φ1
T
(x1 i)Φ1(x1 j) , (K 2)ij=Φ2

T
(x2i)Φ2(x2 j)

Importantly, the task definition now only refers to the kernels, the 
actual feature transformations are no longer needed in it.
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Nonlinear CCA by a “kernel trick”
● Solution of kernel CCA: first, form the matrix
   where                   ,  ,  
● Then form the singular value decomposition of K:

   where D has the singular values,
        are eigenvectors of       ,
        are eigenvectors of       

● Then the first canonical correlation directions are given by
      

  and the second directions are given by the second pair of 
  eigenvectors, and so on

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.

To solve the directions                     (and so on for the next directions)  one only needs 
to compute the kernel, the actual transformations phi are not needed!

The vectors                   define the canonical correlation directions but they are not 
linear projections of the original data features. We show how to project new data onto 
these directions on the next slide.

K=Γ11
−1/2

Γ12Γ22
−1 /2

K=(γ1,γ2,…,γk)D(θ1,θ2,… ,θk)
T

α1=Γ11
−1/2

γ1 , β1=Γ22
−1 /2

θ1

α1 , β1

α1 , β1



29

Nonlinear CCA by a “kernel trick”
● Projections of new data: for a new point           from view 1, the 
projection to the canonical correlation direction is

● For a new point           from view 2 similarly:  

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.

w1Φ1
T
(x1, new)=∑

i=1

M

αiΦ1(x1 i)
T
Φ1(x1,new)=∑

i=1

M

αiK 1(x1 i , x1,new)

x1,new

K 1(x1 i , x1,new)where                          is the 
kernel (similarity) function 
value between the new point 
and training point i in view 1.

To project data one only needs to compute the kernel, the actual transformations phi are not 
needed!

Thus the whole nonlinear CCA (kernel CCA) can be computed based on the kernel 
functions only, without ever needing to specify what the actual transformations are. 
Sometimes it is much easier to specify a kernel function (inner product function, similarity 
function) between data than to define good features for data - then kernel CCA is very useful.

x2,new

w2Φ2
T
(x2,new)=∑

i=1

M

βiΦ2(x2i)
T
Φ2(x2,new)=∑

i=1

M

βiK 2(x2 i , x2,new)

where                          is the kernel function in view 2.K 2(x2i , x2,new)
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Nonlinear CCA by a “kernel trick”
● Centering (mentioned earlier): if     is a transformation to non-zero-
  mean feature values, then the “centered” transformation

                       has average value zero over the data set
● If K is the kernel matrix of inner products corresponding to       ,

then , where 1 denotes a 
matrix where all entries are have value 1, is the kernel matrix 
corresponding to the centered transformation. The rest of the 
algorithm can simply be run using these centered kernel 
matrices.

Following the approach from Lai, P. L. and Fyfe, C. 2000. Kernel and Nonlinear Canonical Correlation Analysis. 
International Journal of Neural Systems 10(5), 365-377. Images from that paper.

Φ(x)−(1/N )∑
i

Φ(xi)

K−(1/N )1K−(1/N )K 1+(1/N 2
)1K 1

Technical note
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k_1(x,y) = exp(-(x-y)^T (x-y)*a)
= f(x)^T f(y)

(x^T y + 1)^d

Part 3: Other variants of 
Canonical Correlation Analysis 
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More general “dependent components” of data 

Correlation is only a simple measure of dependency: for example, 
  cannot detect correlation between x and y coordinates in a circle.

● Nonlinear kernel transformations help, but then the correlated 
  components become hard to analyze

● Can we find linear transformations (a subspace of each feature set) 
  that would be maximally dependent?

● That is, can we find subspaces that would maximize some more 
  complicated measure of dependency than correlation?

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.
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More general “dependent components” of data 
● One way to measure dependency is to compare two models of 
  data (hypotheses about the data): one model that allows 
  dependencies between the two feature sets, and one model that  
  disallows them.
● If the model that includes dependencies is much better at modeling 
  the data, then dependencies are likely to be present in the data.
● Consider a Bayes factor between two hypotheses: one says the 
  two feature sets are unrelated, the other says they can be related.
● The Bayes factor is (essentially) the ratio of likelihoods of the two 
  hypotheses, given the data:

● The Bayes factor is a way to compare two hypotheses. How can we 
  use it to find the maximally dependent subspaces from data? 

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.
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More general “dependent components” of data 
● Idea: to find two subspaces, we don't care about a model of the 
  whole data, we only care about whether the features in the two 
  subspaces are correlated.
● For each choice of two subspaces (a subspace of feature 
  set 1, and a subspace of feature set 2), compare whether data in 
  those two subspaces are related, by comparing two models: one 
  model that allows dependencies between the two subspaces, 
  and one model that disallows them.
● Compute a Bayes factor between two hypotheses: one says the 
  two subspaces are unrelated, the other says they can be related:

 where f is the mapping from data to the two subspaces by and   are 
  its parameters
● We will maximize this Bayes factor with respect to the subspaces

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.
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More general “dependent components” of data 
● For a linear transformation,  where Dn is the 
  data matrix for the n:th feature set and      is the projection 
  parameter
● A model is a model of data density: in addition to having the 
  subspaces (linear transformations    ), the models typically need 
  parameters of the density in the subspace
● When we want to find the best pairs of subspaces, the density 
  parameters are “nuisance parameters” since they change with every
  pair of subspaces
● We also don't want to overfit the density parameters to small 
  amounts of data (could give exaggerated measures of dependency)
● Idea: there are nonparametric density estimators that have very 
  few parameters but are still able to create detailed density 
  estimates: they use the data itself as part of the model.

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.
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More general “dependent components” of data 
● A leave-one-out Parzen density estimator evaluates density at 
  each data point by placing a Normal distribution around every other 
  point, and averaging the density. Can be seen as a mixture model 
  with a very large number of components or as a kernel density 
  estimate. Density at training point i: 

● The means of the Gaussians come directly from data: the only 
  remaining density parameter is     , which can be estimated e.g. 
  along with the projections, or by separate heuristics. 

● We will use a leave-one-out Parzen density estimator to estimate 
  the density within each subspace, or within each pair of subspaces

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.

p(xi ;σ)=
1

N−1 ∑
j=1 ; j≠i

N

N (xi ; x j ,σ)=
1
N−1 ∑

j=1 ; j≠i

N
1

(2πσ
2
)
d /2 e

−(xi−x j)
2
/2σ2

σ
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More general “dependent components” of data 
● Model for independent subspaces: features in each subspace are 
  independent of the other subspace---->joint density at a data sample
  is the product of densities within each subspace.

  where y denotes the features of a sample in both subspaces,     is 
   an identity matrix of dimension d, and      and      are the
  dimensionalities of the subspaces (dimensionality after projection) 

● Model for dependent subspaces: features in each subspace depend
  on each other. Density is created over concatenated features of both
  subspaces. 

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.

pindependent ( y=(θ1
T x1 ,θ2

T x2);σ)=p(θ1
T x1;σ) p(θ2

T x2 ;σ)

=(
1

N−1 ∑
j=1 ; j≠i

N

N (θ1
T xi ;θ1

T x j ,σ I d1))(
1
N−1 ∑

j=1 ; j≠i

N

N (θ2
T xi ;θ2

T x j ,σ Id2))

pdependent ( y=(θ1
T x1 ,θ2

T x2);σ)

=(
1

N−1 ∑
j=1 ; j≠i

N

N ([θ1
T x1 θ2

T xi];[θ1
T x j θ2

T x j] ,σ I d1+d2))

Id
d1 d2
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More general “dependent components” of data 
● The maximize the Bayes factor

  with respect to the projections (and possibly also     ) using for 
  example a gradient descent algorithm. 

Following Arto Klami and Samuel Kaski. Non-parametric dependent components. In Proceedings of ICASSP'05, IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pages V-209 - V-212, IEEE, 2005. Pictures from that paper.

log
∏
i=1

N

pdependent ( y=(θ1
T xi ,1 ,θ2

T xi ,2);σ)

∏
i=1

N

pindependent ( y=(θ1
T xi ,1 ,θ2

T xi ,2);σ)

=∑
i=1

N

log pdependent ( y=(θ1
T xi ,1 ,θ2

T xi ,2);σ)−log p (θ1
T xi ,1;σ)−log p(θ2

T xi ,2;σ)

=∑
i=1

N

log(
1

N−1
∑

j=1 ; j≠i

N

N ([θ1
T x i ,1 θ2

T x i ,2];[θ1
T x j ,1 θ2

T x j ,2] ,σ I d1+d2))

−log(
1

N−1 ∑
j=1 ; j≠i

N

N (θ1
T x i ,1;θ1

T x j ,1 ,σ I d1))

−log(
1
N−1 ∑

j=1; j≠i

N

N (θ2
T xi ,2;θ2

T x j ,2 ,σ I d2))

σ
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