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On this lecture:

● Probabilistic canonical correlation analysis

● Nonlinear canonical correlation analysis through 
  a “kernel trick”

● Variants of canonical correlation analysis
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Canonical Correlation Analysis, recap

Reminder: CCA finds projections of two simultaneously 
observed data sources (two feature sets for the same 
samples) so that the projections are maximally correlated.

Used in many tasks and data domains.
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Canonical Correlation Analysis, recap
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● Find the projection bases by maximizing the correlation between 
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● For a finite data set: maximize the sample correlation

corr (w x
T x ,w y

T y)=
E [wx

T x w y
T y ]

(E [(w x
T x)2]E [(w y

T y)2])1/2
This definition assumes x 
and y are zero-mean, 
otherwise substract the 
means as in the original 
correlation definition.

^corr (wx
T x ,w y

T y)=
^EML [w x

T xw y
T y ]

( ^EML [(w x
T x)2] ^EML[(w y

T y)2])1/2 ^EML[ x y ]=
1
N∑

i=1

N

xi y i

Same definition 
as before



5

Canonical Correlation Analysis, recap

● CCA can be solved as a generalized eigenvalue equation

● This is a generalized eigenvalue equation which we can solve to get
   w

x
 , and the previous equation then gives w

y  
 from w

x
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Part 1: Probabilistic Canonical 
Correlation Analysis
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Canonical Correlation Analysis, recap

Reminder: CCA finds projections of two simultaneously 
observed data sources (two feature sets for the same 
samples) so that the projections are maximally correlated.

Used in many tasks and data domains.
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Canonical Correlation Analysis, recap
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CCA, probabilistic interpretation, motivation
●  Probabilistic models are descriptions of data distributions 

  (underlying observed data sets)
●  Properties that are strongly connected to a probabilistic model are 

  motivated by the properties of that model (if the model is a good   
 model for data, then the properties involved in the model are likely 
to 
  be useful). 

●  Additionally, probabilistic models can be estimated and analyzed in 
  many ways (using all tools of probability theory) 

●  ------> it is useful to connect the things we compute from data to 
  probabilistic models.

●  Can CCA be seen as a probabilistic model for the distribution of 
  data in some data set? Yes!

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

●  Principal component analysis (PCA) has been shown to be the 
  same as maximum likelihood fitting of a probabilistic model: 
● Assume        are IID observations of random 

vectors, where                                 is an individual vector.
● Sample mean and covariance matrix:

●  PCA tries to find a linear transformation                  to find 
 orthogonal directions of largest variance. Projecting data onto 
principal components makes data features uncorrelated.

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

● PCA solution for d components: where     is the 
diagonal matrix of largest eigenvalues,     is the matrix of the 
corresponding eigenvectors, and R is any rotation matrix

● Interpreting the PCA solution: consider maximum likelihood fitting 
of the following probabilistic model to observations

where the parameters are      ,      , and     . This model says data 
are first distributed along latent axes z, and then noise is 
independently added to all coordinates.

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation, motivation

●  It can be shown the maximum likelihood solution to 
  the model fitting is    ,            , and
  where     is the diagonal matrix of largest eigenvalues,
       is the matrix of the corresponding eigenvectors, and R is any 
  rotation matrix.

●  Given an observation x, the expected value of the latent variable z 
  can be computed from the model as

●  Same subspace as in PCA; same projections if left-out eigenvalues 
  are zero

●  We will build a probabilistic interpretation for CCA with a similar 
  approach as above

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

●  We now show that the CCA directions can also be solved by fitting 
a simple generative model to the data:

The model says: there is a single (vector-valued) latent variable z 
which generates both       and 

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.



17

CCA, probabilistic interpretation

●  Model equations: 

latent variable is normally distributed with p uncorrelated dimensions

   
first observed variable is a projection of the latent variable, with added normally 
distributed noise (full noise covariance matrix)

      
second observed variable is another projection of the latent variable, with added  

normally distributed noise (full noise covariance matrix)
 

●  Intuitively, this model makes sense. Next, let's show it really gives 
the same solution as CCA

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.



18

CCA, probabilistic interpretation
Normal CCA solution with slightly different notation:

● CCA notation: given feature sets      and      of samples, with 
  dimensionalities       and      , find a projection (linear transformation)
  for each feature set
● Find the projections such that one component within each set of 
  transformed variables is correlated with a single component in the 
  other set.
● CCA reduces the correlation matrix to a 
  block-diagonal matrix, where each block has the form
  (padded with zeros if the dimensionalities are unequal)
  and the     are the canonical correlations; at most p=min(      ,     ) 
  nonzero canonical correlations.
● Denote the sample covariance matrix as

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.

covariance among 
1st feature set

covariance among 
2nd feature set

cross-covariance
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CCA, probabilistic interpretation

● Then the CCA solution is the set of canonical pairs of projection 
   vectors               , where
   and   are pairs of left and right singular vectors of the matrix
                                           and the corresponding singular value is

the canonical correlation      for
and zero otherwise

● If all canonical correlations have different values, the singular 
  vectors have a unique solution.
● Assume the sample covariance matrix is invertible, and denote
                                  and   . Then

●  projecting the 1st feature set to its projection directions makes the 
projected features uncorrelated

●  projecting the 2nd  feature set to its projection directions makes the 
projected features uncorrelated

●  projecting the features makes the cross-correlations diagonal (P = diagonal matrix 
of the canonical correlations)

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● The CCA directions and corresponding canonical correlations can 
  also be obtained from a generalized eigenvalue problem:

● Next we show that the CCA directions can also be solved by fitting 
the previously described simple generative model to the data:

The model says: there is a single (vector-valued) 
latent variable z which generates both 

and

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● Here are the model equations again: 

latent variable is normally distributed with p uncorrelated dimensions

   
first observed variable is a projection of the latent variable, with added normally 
distributed noise (full noise covariance matrix)

      
second observed variable is another projection of the latent variable, with added  
normally distributed noise (full noise covariance matrix)

 

● It can be shown where                        are
  the maximum arbitrary matrices (with
  likelihood solution spectral norms < 1) such
  is that  . 

Columns of         ,           have       
                the first d canonical directions,       has 

the corresponding canonical 
correlations

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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CCA, probabilistic interpretation

● Given observations of       and/or       , we can use the model to 
predict the latent variable (mean and variance):

● The expectation of z given      (or     ) projects      (or     ) into the 
   same subspace as in CCA

Following the approach from Bach, F. R. and Jordan, M. I. 2005. A Probabilistic Interpretation of Canonical Correlation 
Analysis. Tech. Report. 688. Dept. of Statistics, University of California. Images from that paper.
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