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On this lecture:

● Canonical correlation analysis
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Part 1: Canonical Correlation 
Analysis



4

Motivation for CCA

● Recap: correlation is one of the most basic statistical measures 
   of dependency between two real-valued scalar variables. 

● Covariance between two variables: cov(x,y) = E[ (x-E[x])(y-E[y]) ]
   Depends on scales of the variables.

● Correlation coefficient (Pearson's product-moment correlation 
   coefficient) between two variables:
   

● For zero-mean variables: Terms can be estimated from samples {(xi,yi)}
i=1,...,N

corr (x , y)=
cov (x , y)

stdev (x)stdev ( y)
=

E [(x−E [x ])( y−E [ y ])]

(E [(x−E [x ])2])1/2(E [( y−E [ y ])2])1/2

corr (x , y)=
E [xy ]

(E [x2]E [ y2])1/2
^EML[ x y ]=

1
N
∑
i=1

N

x i y i
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Motivation for CCA

● If two variables have zero correlation (uncorrelated), they are 
   linearly independent, otherwise they are linearly dependent.

● If two variables are linearly dependent, a linear predictor y = ax+b  
   can predict one variable from the other with some accuracy.
● Example: People's height and weight are positively correlated; 
poverty rate  and education level might be negatively correlated

● If two variables have zero correlation, a linear predictor cannot 
   predict one variable from the other.

● Two statistically independent variables have zero correlation. 
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Motivation for CCA

Caveats: 
● Two variables with zero correlation can be dependent in nonlinear 
   ways. If two variables have nonzero correlation, they may also  
   have nonlinear dependency that correlation is unable to measure. 
   Nonlinear dependencies can be exploited by a nonlinear predictor.
● Correlation does not imply causation: if x is correlated with y, then 
   x might cause y, y might cause x, or x and y might be caused by 
   other variables, some of which affect both x and y.
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Motivation for CCA

● More complicated situation 1: What about when we have 
several scalar variables x

1
, x

2
,...,x

K
, and we are not sure how they 

are related to y?
 

● It can happen that individual variables x
i
 are not strongly 

correlated with y, but there is a linear combination of variables that 
is strongly correlated to y.
 

● Example: total time of multi-hop bus journeys depends on the sum 
of journey lengths. The length of the first journey is not enough by 
itself to predict the total time.
  

● Idea: which linear combination of  x
1
, x

2
,...,x

K
  is most strongly 

   correlated with y? Can we find the best linear combination
   a

1
x

1
+ a

2
x

2
+...,+a

K
x

K 
, that is, the best weights a

1
, ...,a

K
 ?

  

● Yes: this turns out to be the same as ordinary least-squares 
linear regression!

Example 2: assume Finnish mail carries lots of letters with different 
dimensions x

1
=height, x

2
=width, each occurring uniformly in some 

interva, and a roughly constant thickness. How does y=weight of 
letters depend on the dimensions? 

● In this case, weight depends mostly on volume, thus y depends 
on x

1
*x

2
*depth. This is a nonlinear dependency, but in a finite 

interval (of letter widths and letter heights) it can be 
approximated by a linear predictor.

●
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Canonical Correlation Analysis

● More complicated situation 2: What about when we have 
several scalar variables x

1
, x

2
,...,x

K
, and also several scalar 

variables y
1
, y

2
,...,y

L
, ? How can we now find what relationships exist 

between the x variables and the y variables?
● Canonical correlation analysis (CCA) is a method of correlating 
  two multidimensional variables x = [ x

1
, x

2
,...,x

K 
] and y = [ y

1
, y

2
,...,y

L 
] 

● Proposed by H. Hotelling. (Hotelling, H. Relations between two 
sets of variates. Biometrika, vol. 28, pages 312–377, 1936.)
● Idea: not all of x needs to be correlated with all of y or vice versa, 
   as long as there is something correlated between x and y.
● Problem definition: given two sets of variables, find basis vectors 
   (linear transformations), one for each set of variables, so that the 
   correlations between the linear projections of the variables onto 
   the basis vectors are mutually maximized (the projected 
   coordinates are maximally correlated).
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Canonical Correlation Analysis

● For x, find a projection w
x,1

x
1
 + w

x,2
x

2 
+ ... + w

x,K
x

K
 where 

  w
x
 = [ w

x,1
, w

x,2
,...,w

x,K 
] is the projection basis. 

● For y, find a projection w
y,1

y
1
 + w

y,2
y

2 
+ ... + w

y,L
y

L
 where 

  w
y
 = [ w

y,1
, w

y,2
,...,w

y,L 
] is the projection basis.

● Find the projection bases by maximizing the correlation between 
  the projections: maximize

  with respect to w
x
 and w

y
.

● For a finite data set: maximize the sample correlation

corr (w x
T x ,w y

T y)=
E [wx

T x w y
T y ]

(E [(w x
T x)2]E [(w y

T y)2])1/2
This definition assumes x 
and y are zero-mean, 
otherwise substract the 
means as in the original 
correlation definition.

^corr (wx
T x ,w y

T y)=
^EML [w x

T xw y
T y ]

( ^EML [(w x
T x)2] ^EML[(w y

T y)2])1/2
^EML[ x y ]=

1
N∑

i=1

N

xi y i

Same definition 
as before
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Canonical Correlation Analysis

● How can we find the maximal correlation with respect to w
x
 and w

y
?

● It turns out this can be rewritten as a generalized matrix eigenvalue
  problem. Let's show how that is done.
● First, rewrite the correlation to show it depends on covariance 
matrices:

^corr (w x
T x ,w y

T y)=
^EML [w x

T xw y
T y ]

( ^EML [(w x
T x)2] ^EML[(w y

T y)2])1/2

=
^EML [w x

T x yT w y ]

( ^EML [wx
T x xT w x ] ^EML[w y

T y yT w y])
1/2

=
w x
T ^EML[x y

T
]w y

(wx
T ^EML [x x

T
]w xw y

T ^EML [ y y
T
]w y)

1/2

=
w x
T ^C x , yw y

(w x
T Ĉ xw xw y

T Ĉ yw y)
1/2

^C x , y=
1
N∑

i=1

N

xi yiT

Sample estimate of the 
covariance matrix

Ĉ x=
1
N∑

i=1

N

xi xiT

Ĉ=[ Ĉ x
^C x , y

^C y , x Ĉ y
]
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Canonical Correlation Analysis
Proof continues...
● Notice that the scales of w

x
 and w

y  
do not affect the correlation, so

  we can set any requirement that can be satisfied by changing the   
  scales alone. For example, we can require                       ,  

● Then the optimization becomes a constrained optimization problem:

  such that       ,

● Constrained optimization problems can be solved by the method of   
  Lagrange multipliers, that is we maximize the Lagrangian

maxw x ,w y
[wx

T ^C x , yw y ] w x
T Ĉ xw x=1 w y

T Ĉ y w y=1

w x
T Ĉ xw x=1 w y

T Ĉ yw y=1

maxw x ,w y
L(wx ,w y ,λx ,λ y)

L(w x ,w y ,λx ,λ y)=(w x
T ^C x , yw y−

λx

2
(w x

T Ĉ xw x−1)−
λ y

2
(w y

T Ĉ yw y−1))
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Canonical Correlation Analysis
Proof continues...
● At the optimum, the derivative of the Lagrangian must be zero with 
respect to w

x
 and w

y  
 . This gives

substract the  w
x
  times the second equation from  w

y  
 times the first:

d L
d wx

= ^C x , yw y−λx Ĉxwx=0

d L
d w y

= ^C y , xw x−λ y Ĉ y w y=0

w x
T Ĉ xw x=1 w y

T Ĉ yw y=1

w x
T ^C x , yw y−λxw x

T Ĉxw x−w y
T ^C y , xwx+λ yw y

T Ĉ yw y

=−λ xw x
T Ĉ xwx+λ yw y

T Ĉ yw y

=−λx+λ y

=0
w x
T Ĉxw x=1

w y
T Ĉ yw y=1

because we 
required
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Canonical Correlation Analysis
Proof continues...
● Therefore the Lagrange multipliers are equal, and

● Inserting that into the other derivative equation gives

● This is a generalized eigenvalue equation which we can solve to get
   w

x
 , and the previous equation then gives w

y  
 from w

x
. 

● If the covariance of x is invertible, this can also be written as a 
  standard eigenproblem with some additional steps

^C x , y Ĉ y
−1 ^C y , xw x=λ

2 Ĉ xw x

d L
d w y

= ^C y , xwx−λ Ĉ yw y=0→w y=(1 /λ)Ĉ y
−1 ^C y , xw x
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Canonical Correlation Analysis
Generalizations of CCA:
● Several possible generalizations of CCA to more than two sets of 
variables have been proposed. One is (Hardoon, Szedmak, Taylor):

● CCA can be shown to be a generative model of data (next on this 
  lectures).
● CCA can be generalized to analyze nonlinear correlations through 
  a kernel mapping (later in the lectures)
● CCA can be incorporated with sparsity and other prior desires for 
   the projection bases

min
W (1) ,... ,W (M ) ∑

m,n=1,m≠n

M

‖W (m)T x(m)
−W (n)T x(n)‖F

W (m)T ^CmmW
(m)

=I W (m)T ĈmnW
(n)

=0
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Canonical Correlation Analysis, example

● In this example x and y are both 3-dimensional. 
● x = [x

1
 x

2
 x

3
] is randomly distributed according to a three-

dimensional isotropic (spherical) Gaussian
● y = [y

1
 y

2
 y

3
] = [red green blue], where “red” is proportional to 

  x
1
+x

2
+x

3
 and green and blue are randomly normally distributed.

In this picture x is shown as 
3D spatial coordinates, and y 
is shown as red-green-blue 
(RGB) color components
Matlab/octave code:

x=randn(500,3);
y=randn(500,3);
y(:,1)=sum(x,2);
for k=1:3, 
y(:,k)=(y(:,k)-min(y(:,k)))/(max(y(:,k))-
min(y(:,k))); end;

scatter3(x(:,1),x(:,2),x(:,3), ...
   10*ones(size(x,1),1),y,'filled');
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Canonical Correlation Analysis, example

● Let's compute and solve the eigenvalue equation.
C = cov([x y]);
Cx=C(1:3,1:3);
Cy=C(4:6,4:6);
Cxy=C(1:3,4:6);
A=Cxy*inv(Cy)*Cxy';
B=Cx;
[Wx,D]=eig(A,B);  % A*Wx=B*Wx*D
Wy=inv(Cy)*Cxy'*Wx*inv(D);

Resulting projections match 
perfectly (correlation 1)
xp=x*Wx(:,1);
yp=y*Wy(:,1);

figure;
scatter(xp,yp,10*ones(size(x,1),1),y,'filled');

Wx =
   1.00000   0.82944  -0.70922
   1.00000   0.30068   1.00000
   1.00000  -1.00000  -0.40489

D =
   1.0000e+00            0            0
            0   1.6523e-04            0
            0            0   5.8796e-03

Wy =
   9.7948e+00   2.2388e+01  -1.5861e+00
  -3.0531e-16  -6.2843e+02  -4.2152e+01
   5.2736e-16  -2.2199e+02   8.7614e+01

The 1st column 
of Wx projects x 
to x1+x2+x3
(corresponds to 
largest 
eigenvalue in D)

      1st column 
of Wy 
projects y 
to y1
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Canonical Correlation Analysis, example
Connection to least-squares regression:
● If y is one-dimensional (scalar): 
   let X

all
 = [x1 x2 ... xN]  and y

all
 = [y1 y2 ... yN]T, then we have

● The ordinary (least-squared) linear regression solution is

         , we show it satisfies the eigenvalue equation.

● We must show that the solution satisfies
  for some scalar  

^C x , y=
1
N∑

i=1

N

xi yi=
1
N
X all yall

Ĉ x=
1
N∑

i=1

N

xi xiT=
1
N
X allX all

T
Ĉ y=

1
N∑

i=1

N

yi yi=
1
N
yall
T yall

w x=(X allXall
T
)
−1X all yall

^C x , y Ĉ y
−1 ^C y , xwx=λ

2 Ĉ xw x
λ
2
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Canonical Correlation Analysis, example
Denote the singular value decomposition 
● Right-hand side of the eigenvalue equation:
   

● Left-hand side of the eigenvalue equation: 

λ
2 Ĉ xw x= λ

2
(
1
N
XallX all

T
)(XallX all

T
)
−1Xall yall=

1
N

λ
2X all yall

^C x , y Ĉ y
−1 ^C y , xw x=

(
1
N
X all yall)(

1
N
yall
T yall)

−1

(
1
N
X all yall)

T

(Xall X all
T
)
−1Xall yall=

((N yall
T yall)

−1
)Xall yall yall

T Xall
T
(X allX all

T
)
−1X all yall=

((N yall
T yall)

−1
)UDV yall yall

T V T DUT
(UDV V T DUT

)
−1UDV yall=

((N yall
T yall)

−1
)UDV yall yall

T V T DUT
(U D2U T

)
−1UDV yall=

X all=UDV

((N yall
T yall)

−1
)UDV yall yall

T V T DUTU D−2UTUDV yall=

((N yall
T yall)

−1
)UDV yall yall

T V T DD−2DV yall=

((N yall
T yall)

−1
)UDV yall yall

T V TV yall= ((N yall
T yall)

−1
)UDV yall yall

T yall=

(N−1
)UDV yall=(N−1

)X all yall
Equality satisfied with lambda=1
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